Language in Motion:
the 21st century standard model of cognition and its implications for experimental pragmatics

Jesse Snedeker
Harvard University
XPRAG.de 2014
Notes about the use of these slides

These slides are being provided for the personal use of participants at the XPRAG.de meeting (Berlin July 2014). I do not hold the copyright to most of the images in the slides and thus I cannot extend use of that copyright to you. I also request that you do not cite these slides unless you contact me first (snedeker@wjh.harvard.edu).

There are two reasons for this. First, it is very easy to say something stupid or confusing when writing in bullet points. Second, I would like to make sure that you have the correct citation for any of the research that I describe, since much of it is currently under review or in preparation.
Who is this person?

Psycholinguist cross-fostered with linguists and developmentalists
If you have a moment

What do you want to learn:

• About development?
 – Language dev
 – Pragmatic dev
 – Dev methods

• About disorders?
 – Which ones?
 – What we know or how to study?

• What did I skip over/miss today
Outline

• 21st century standard model
 – Whirlwind tour of adult language comprehension

• Implications for Experimental Pragmatics

• Nitty-gritty advice on experimental logic and design
The framework

The 21st Century Standard Model
(psycholinguistic version)
21st century standard model of cognitive processing

1. Processing builds a series of **linked representations**
2. Interpretation is **incremental**
 – Cascaded processing
3. Processes at each level are **interactive**
 – influenced by multiple other levels
4. Incremental, interaction generates **predictions**
5. No walls around language
 – Incremental interaction between linguistic and nonlinguistic processes
1. Comprehension is a series of processes

phonology

lexicon

syntax

semantics

pragmatics
Modularity
Processes sequential & independent

phonology
lexicon
syntax
semantics
pragmatics

Fodor (1983)
Information Encapsulation
21st Century Standard Model:

2. Cascaded Processing

phonology

lexicon

syntax

semantics

pragmatics
21st Century Standard Model:

2. Cascaded Processing
21st Century Standard Model:

2. Cascaded Processing

- phonology
- lexicon
- syntax
- semantics
- pragmatics
21st Century Standard Model:

2. Cascaded Processing
Example: Phonosemantic priming

“Pick up the log...g”

Conceptual priming via phonological associate

Yee & Sedivy (2006)
21st Century Standard Model:

3. Interactive Processing
Example: many cues for syntactic parsing
Alice attacked the paper with the flawed data
Alice attacked the paper with the flawed data
- During parsing adults rapidly integrate information from
 - Lexicon
 - Tickle the pig with the....
 - Choose the pig with the....
 - Prosody
 - You can tickle...the pig with the fan
 - You can tickle the pig...with the fan
 - Pragmatics
 - Are there two pigs? Does the speaker know this?
 - World knowledge
 - Tickle the pig with the feather
 - Tickle the pig with the hat

Interactive Processing: allows you to consider other arrangements
Interactive Processing: allows partial independence of semantics

Jackendoff, 2002; MacDonald et al., 1994; Pinker, 1984; Gleitman, 1990; Kuperberg, 2007 inter alia
Interactive Processing:
Clarifies the role of prosodic structure

- Phonology
- Syntax
- Lexicon
- Semantics
- Pragmatics
- Prosody
- Acoustic
Interactive Processing:
Clarifies the role of prosodic structure

- phonology
- lexicon
- syntax
- semantics
- pragmatics
- prosody
- acoustic
Interactive Processing: allows for pragmatic input to enrich semantic structures

Sperber & Wilson, 1986; Chierchia, Fox & Spector, 2011; Carston, 2002/2009
21st Century Standard Model:

4. Predictive processing

A result of incrementality + top-down processing
4. Predictive Processing

- Prediction: anticipating words or referents that have not yet been spoken
- Incremental, interaction generates inferences about upcoming material

Altmann & Kamide (1999)
- The boy will move the cake
- The boy will eat the cake
Thematic prediction

• Adults use morphosyntactic cues to determine thematic role of one noun, and predict the upcoming noun
 – Active/passive in English

• 4-5 year old children do too
 – Active/passive constructions in Mandarin (Huang, Zheng, Meng & Snedeker, 2013)
 – Case marking in Turkish (Ozge, Kuntay & Snedeker, in prep)
The seal-ACC quickly that –LOC shark-NOM will eat

Turkish 4 years olds: Ozge, Kuntay & Snedeker (in prep)
The seal-NOM quickly that –LOC fish-ACC will eat
21st century standard model

5. No walls around language

Incremental, interactive processing crosses domains
Crosstalk with other cognitive domains

• From language to action
 – Eye movements are actions
 – Language processing at many levels incrementally informs action planning (see above!)
 – One explanation for Action Compatibility Effects (embodied cognition)

• From language to vision

• From vision to language
Incremental visual activation from words
(Pirog Reville, Aslin, Tanenhaus & Bavalier, 2008)

• Ss learn novel motion and state change verbs
• Verbs have phonological cohort members from the same class or from a different class
 – gapito = turn white (state change)
 – gapitu = oscilate vertically (motion)
• fMRI:
 – Find area MT (motion detection) using localizer (blue)
 – Find area that responds to motion verbs (red)
 – In that area: compare non-motion words that have motion cohort member vs. those that do not (orange)
• Hearing a word that overlaps with a motion word activates visual representations of motion
Crosstalk with other cognitive domains

• From language to action
 – Eye movements are actions
 – Language processing at many levels incrementally informs action planning (see above!)
 – One explanation for Action Compatibility Effects (embodied cognition)

• From language to vision

• From vision to language
During object naming, perception must (directly or indirectly) activate linguistic representations. But does this happen when we are not speaking?

Implicit Naming: the activation of linguistic representations in a non-communicative task

Evidence:

- Phonosemantic activation in infants

Manizeh Khan
Phonosemantic activation... without speech

Inspired by Mani, Durrant & Floccia (2012)
Unrelated Trials

1500ms

200ms

2050ms

“book”

“oooh”
Implicit naming leads to phonosemantic activation in 24 month olds

Khan, Geojo, Wang & Snedeker, in prep
In adults, verbal encoding is task dependent

- *Lexical activation* present in nonlinguistic tasks?
 - Homophonous competitors are fixated in visual search (Meyer et al., 2007) and free viewing (Khan, Fitts & Snedeker, in prep)

- *Phonological activation* absent in purely nonlinguistic tasks
 - Visual search (Telling, 2009; Zelinsky & Murphy, 2000) and free viewing (Khan et al., in prep)

- But *phonological activation* present in “optionally” linguistic tasks
 - Working Memory Task (Zelinsky & Murphy, 2000)
 - Free viewing, prime unlabeled but target labeled (Mani, pc 2014)
21st Century Standard Model:

6. Processing is flexible/dynamic

Constraints can be suspended or altered in a given context.
21st Century Standard Model:

6. Processing is flexible/dynamic

Constraints can be suspended or altered in a given context.
Sedivy (1999): adjectives and informativity

“Pick up the tall glass”
No Contrast: Prolonged Interference

Contrast: More Rapid Target Looks
Contrast Effect

- Similar for Material Adjectives (china)
- Present in questions
 - Is there a tall glass?
- Pattern for color adjectives reflects production patterns

Suggests that its inference based on speaker model (pragmatic)

Sedivy et al., 1999; Sedivy, 2003
Strange Speaker Manipulation (Grodner & Sedivy, 2011)

- Reliable Condition: Speaker is subject in study, initially produces optimally informative utterances
- Unreliable Condition: Speaker has social/language disorder, gives impossible instructions on filler trials, consistently over-informative

![Graph](image)
Issue for experimental design

- **Most common design:** cue pitting
 - Adj + 2 ref
 - Adj + 1 ref
 - No Adj +2
 - No Adj +1

- **Participants adjust quickly**

- **Results in infelicitous utterances**

Reliable Speaker: 35 min, 20 critical trials
Processing system is highly dynamic

- Strange speaker manipulation eliminates expectation that disfluent nouns refer to unusual objects (Arnold & Tanenhaus, 2011)
- Semantic priming depends on the proportion of primes in the stimuli (Bodner & Masson, 2003)
- Use of a given syntactic or semantic structures primes subsequent use
 - Syntax: double object vs. prepositional dative (Bock)
 - Scope ambiguity (Raffery & Pickering)
21st century standard model is pervasive
21st century standard model of cognitive processing

1. Processing builds a series of **linked representations**
2. Interpretation is **incremental**
 – Cascaded processing
3. Processes at each level are **interactive**
 – influenced by multiple other levels
4. Incremental, interaction generates **predictions**
5. No walls around language
 – Incremental interaction between linguistic and nonlinguistic processes
21st century standard model is pervasive

Example: visual areas in macaque

Rees, Kreiman & Koch (2002)
21st century standard model is pervasive

Example:
Barr’s model of context in visual perception

Cheung & Barr (2011)
Modularity is dead but linguistics need not mourn

- Information encapsulation can only be saved by becoming vacuous
- But domain-specificity is alive and well
 - Uncontroversial forms (levels)
 - Controversial forms (distinct processes, divergent characteristics of each of level)
- Nativism does not depend on either
Implications for Experimental Pragmatics
Lesson 1:
Need to consider multiple time scales
Four time scales in any experiment

• Time since the trigger word (ms)
 – N400, gaze shift 200-1200 after word onset....

• Time since the cue appeared (ms to min)
 – Between-subjects design: earlier in sentence
 – Within-subjects design: earlier in study

• Time in experiment (sec to days)
 – Over short time scales processing adapts

• Developmental time (years)
 – What is the history of participants experience with this information
Four time scales in any experiment

• Time since the trigger word (ms)
 – N400, gaze shift 200-1200 after word onset....
 – Temptation to think of this as “processing time”

• Time since the cue appeared (ms to min)

Sometimes these are the same, and sometimes they are different....
Cue is the trigger (Huang & Snedeker, 2009; 2011)

Design real time SI processing task simple enough for a child

Is the lower-bounded meaning of “some” available before the SI?

When are SI’s made?
“Point to the girl that has all/three of the socks.”
“Point to the girl that has **some/two** of the socks.”

Quantifier is both the cue and trigger
~800ms delay in looks to target

Huang & Snedeker, 2011
Cue before trigger: Nieuwland et al., 2010

Some people have \textit{lungs/pets, which require good care}

N400 greater for “lungs”

\begin{itemize}
\item \textcolor{red}{Underinformative} Some people have \textit{lungs, ...}
\item \textcolor{black}{Informative} Some people have \textit{pets, ...}
\end{itemize}
Cue before trigger: Nieuwland et al., 2010

Some people have **lungs/pets**, which require good care

Scalar Implicature within 400 ms?
No. Cue came ~1300ms earlier
SI by 1700ms

High AQ-Comm

Underinformative
Some people have lungs, ...
Informative
Some people have pets, ...
Four time scales in any experiment

• Time since the trigger word (ms)
 – N400, gaze shift 200-1200 after word onset....
 – Temptation to think of this as “processing time”

• Time since the cue appeared (ms to min)
 – Well controlled between-subjects design: earlier in the sentence or paragraph
 – Within-subjects design or a confounded design (see below)
Four time scales in any experiment

• Time since the trigger word (ms)
 – N400, gaze shift 200-1200 after word onset....

• Time since the cue appeared (ms to min)
 – Between-subjects design: earlier in sentence

• Time in experiment (sec to days)
 – Learning: subjects may learn what to attend to
 – Unlearning: design may make some cues invalid
 – Priming: low frequency structures become more accessible
Four time scales in any experiment

• Time since the trigger word (ms)
 – N400, gaze shift 200-1200 after word onset....

• Time since the cue appeared (ms to min)
 – Between-subjects design: earlier in sentence

• Time in experiment (sec to days)
 – Learning: subjects may learn what to attend to

• Developmental time (years)
 – What is the history of participants experience with this information?
 – Begin with corpus studies
Lesson 2:
Determining the representational locus of an effect got harder

“The component formerly known as the ELAN”
The component formerly known as ELAN

Friederici (2002)
The component formerly known as ELAN

N400

The man ate the delicious apple

The man ate the delicious cart

Friederici (2002)
The component formerly known as ELAN

The cats won’t *eat* their food

The cats won’t *eating* their food

Friederici (2002)
The component formerly known as ELAN

Friederici (2002)

ELAN

(2) a. Das Baby wurde gefüttert
 The baby was fed

 b. * Das Baby wurde im gefüttert
 The baby was in the fed
The component formerly known as ELAN

Friederici (2002)
The component formerly known as ELAN

Used to support syntax first

Hard to reconcile with evidence that N400 is linked lexical retrieval

Friederici (2002)
The component formerly known as ELAN

Syntax /ELAN early in processing stream

But late in development

How do children interpret sentences? How does it change?

Friederici (2006)
In reading ELAN localizes to visual cortex (Dikker, Rabagliati & Pylkkänen, 2009)

United with prior sensory components: M100, MMN, N100 or P200....
During spoken language ELAN effects are generated in auditory cortex

B. Herrmann et al. / NeuroImage 48 (2009)
What is happening?

1. Prior words are processed generating syntactic structure (semantics etc)

The discovery was
What is happening?

2. Syntactic constraints generate prediction about perceptual form

By 600 - 1200ms after “was” appears (cue word)

The

discovery

was

-----ed
What is happening?

3. This prediction is confirmed (less N100) or disconfirmed (more N100)

In the first 40-150 ms after encountering trigger word

The discovery was reported
Further evidence

• Effects depend on typicality of form for class

• ELAN-like effects may appear in infants if prediction is made easy enough (my interpretation of Bernal et al., 2010)

Dikker et al 2010
Lesson 3:
Pragmatic effects clearly vary in their loci

And ambiguity abounds
5 broad kinds of *pragmatic* effects

1. **Top-down, pragmatic constraints on pre-semantic processes**
 - Lexical and syntactic disambiguation
2. **Top-down processes that fill-in semantic structure**
 - Scalar implicature? Pronoun resolution?
3. **Processing of utterance at a higher linguistic level**
 - Pragmatic level? Discourse model?
4. **Inferential chains within some conceptual level of representation**
 - Irony? Relevance Implicatures? Disjunctive Syllogism?
5. **Processing in other cognitive domains triggered by language**
 - Affiliation, mirroring, emotional reactions, ACE.....
Kind 1: Top-down constraints on lower level processes

Effect of referential context on syntactic parsing

- phonology
- lexicon
- syntax
- semantics
- pragmatics
Kind 1: Top-down constraints on lower level processes

Contextual effects on lexical access
Kind 2: Top-down pragmatic input fills-in semantic structures

Bottom up analysis results in incomplete semantic structure

Pragmatic information used to complete semantic structure

Representational primitives at semantic level

Scalar implicature?

Sperber & Wilson, 1986; Chierchia, Fox & Spector, 2011; Carston, 2002/2009
Kind 2: Top-down pragmatic input disambiguates semantic structures

Somewhat different description....

Syntactic information is compatible with 2 or more semantic structures

Pragmatic information disambiguates

Contextual effects on semantic coercion?
Kind 3: Processing of utterance at higher linguistic level

Pragmatic Level? Discourse Model?

Or are those just ways of talking about the interface of language with other cognitive processes.
Kind 4: Chains of inferences

Language as Thought Version

`sem struc C` → `sem struc B` → `sem struc A`

- phonology
- `lexicon A`
- `syntax A`
- `sem struc B`
- `sem struc C`
Kind 4: Chains of inferences

Language of Thought Version

LOT C → LOT B → LOT A

phonology
lexicon A
syntax A
semantic A
LOT A
Kind 4: Chains of inferences

Language as Thought Version

Same representational vocabulary

sem struc C \[\text{reasoning}\] sem struc B \[\text{reasoning}\] sem struc A

syntax A

lexicon A

phonology

sem struc B

sem struc A
Kind 5: Processing in other domains triggered by language
5 broad kinds of **pragmatic** effects

1. Top-down, pragmatic constraints on pre-semantic processes
 • Lexical and syntactic disambiguation
2. Top-down processes that fill-in semantic structure
 • Scalar implicature? Pronoun resolution?
3. Processing of utterance at a higher linguistic level
 • Pragmatic level? Discourse model?
4. Inferential chains within some conceptual level of representation
 • Irony? Relevance Implicatures? Disjunctive Syllogism?
5. Processing in other cognitive domains triggered by language
 • Affiliation, mirroring, emotional reactions, ACE.....
Lesson 4:
Interaction unfolds over time

Morals from slips of the tongue
Does incremental activation mean that everything happens instantly?

No, this is computation not magic

It still involves transformations of information over time.

7-10 ms to travel over one synapse (who knows how many synapses are involved)
Interaction unfolds over time

Sound exchange errors are more common if the error will form a word

Why?

Baars & Motley (1974) slip paradigm

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Condition</td>
<td>Bad Dean</td>
<td>Dad Bean</td>
</tr>
<tr>
<td>Nonword Condition</td>
<td>Back Deal</td>
<td>Dack Beal</td>
</tr>
</tbody>
</table>
Interaction unfolds over time

Dell (1986) Errors in phonological encoding

Feedback loops influence phonological selection

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Condition</td>
<td>Bad Dean</td>
<td>Dad Bean</td>
</tr>
<tr>
<td>Nonword Condition</td>
<td>Back</td>
<td>Deal Dack</td>
</tr>
<tr>
<td></td>
<td>Deal</td>
<td>Bean</td>
</tr>
</tbody>
</table>
Interaction unfolds over time

Dell (1986) Errors in phonological encoding

Bias for words in phonological errors emerge with more processing time

<table>
<thead>
<tr>
<th>Target Condition</th>
<th>Target</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Condition</td>
<td>Bad Dean</td>
<td>Dad Bean</td>
</tr>
<tr>
<td>Nonword Condition</td>
<td>Back Deal</td>
<td>Dack Beal</td>
</tr>
</tbody>
</table>
Collaborators, conversation and other debts

Yi Ting Huang Noemi Hahn Manizeh Khan Josh Hartshorne

Lab Techs: Amanda Worek Carissa Shafto Tracy Brookhyser Margarita Zeitlin

Daniele Panizza John Trueswell Gennaro Chierchia

Funding Provided by: National Science Foundation Simons Foundation Ellison Foundation