Rationality, Probability, and Pragmatics
ZAS, May 25-27 2016

The pragmatics of cognitive biases: going beyond the bounds

Chris Cummins
University of Edinburgh
c.r.cummins@gmail.com
Work on cognitive biases

- Kahneman, Tversky, and many others since
- General theme:
 - People are irrational in various ways in decision-making
 - This is because we rely on convenient heuristics
- General research method:
 - Elicit people’s responses to a problem or problems
 - Demonstrate that these are individually irrational or collectively inconsistent
- Minimal example: Levin (1987)
 - Elicits a preference (between-participants design) for ground beef described as “75% lean” over that described as “25% fat”
Quantity expressions in language

- e.g. expressions involving numbers
- Appropriate use often involves simplification
- Consequently, numbers alone can convey many meanings
 - exact ("punctual") values *Mary has three children*
 - lower bounds *You need three wins to qualify*
 - upper bounds? *You can make three mistakes and still pass*
 - approximations *The shark was three metres long*
- In widespread use for important information
 - Medical, financial, scientific...
 - Used as a basis for important decisions (although if we’re that irrational....)
Pragmatics in cognitive bias work

• Rather neglected (cf. Levinson 1995)
• “Rationality” typically characterised in terms of what is semantically given
Example: base rate neglect

• Tversky and Kahneman (1974)
 “An individual has been described by a neighbor as follows: “Steve is very shy and withdrawn, invariably helpful but with very little interest in people or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail.” Is Steve more likely to be a librarian or a farmer?”

• “Librarian” response argued to neglect base rate, or involve availability bias

• However, discourse expectations about relevance...

• Relies on the idea that you can give people information without the fact of your doing so being meaningful
• Preference for “75% lean” over “25% fat” irrational only under the assumption that these are the same thing
 ▪ Requires “fat” and “lean” to be complementaries
 ▪ Requires 25% and 75% to take exact meanings
 ▪ By appeal to semantics, both are plausible, but pragmatically the latter in particular is problematic
 ▪ Reasonable to expect these numbers to vacillate between punctual and lower-bound meanings, in which case it’s rational to prefer “75% lean”
Risky-choice framing

- Tversky and Kahneman (1981): selecting program to deal with an outbreak of disease “expected to kill 600 people”

Program A:
200 people will be saved

Program B:
1/3 probability that 600 will be saved; 2/3 probability none will be

Program C:
400 people will die

Program D:
1/3 probability that no-one will die; 2/3 probability that 600 will
• If “200” and “400” attract lower-bound interpretations, then A is better than C

• “No people” is punctual and “600 people” might be if we assume that that’s the full set under discussion
 ▪ Under this assumption, B = D (otherwise complicated)
 ▪ A > (B, D) > C in terms of expected number of lives saved
 ▪ Participants’ choices seem to back this up
• In terms of expected lives saved, there’s no ‘right answer’ on the semantics alone
• Might this promote pragmatic enrichment?
• cf. conjunction fallacy (Tversky and Kahneman 1983)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which is more probable?
1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.
• Mandel (2013) – version of disease experiment with certain options modified by “at least” or “exactly”
 ▪ Version with “at least” patterns with classic demonstrations of risky-choice framing
 ▪ Version with “exactly” demonstrates much less inconsistency (although some, as suggested by Levinson 1995)

• However, still some issues
 ▪ Not clear how the modified expressions are interpreted pragmatically (or even semantically)
 ▪ Doesn’t address how the fractions are interpreted
 ▪ Only interested in punctual, LB and (to some extent) UB readings
Other possibilities

- Approximations?
 - “has a 1/3 chance of saving 600 people” ~ “has about a 1/3 chance of saving about 600 people”

- Could be e.g. some % tolerance
 - But then can’t paraphrase in the way performed in these experiments
 - “200 people will be saved” is not the same as “400 people will die”: sets of scenarios under which these are true/acceptable are not coextensive
Other possibilities

- Pragmatic readings?
 - “has a 1/3 chance of saving 600 people” ~ “has a chance which is better expressed as 1/3 than any other possibility of saving a number of people better expressed as 600…”
 - But then still can’t paraphrase in the way performed in these experiments
 - “200 people will be saved” is not necessarily the same as “400 people will die”: these are competing with different options in the numerical domain
• Would like to explore more carefully how people understand expressions of this type (and why)
• Motivation in part that appropriate professional communication shouldn’t just take refuge in semantic correctness (as we currently understand it)
• Reasoning as a possible window into the finer points of interpretation