Embedded Disjunctions and the Best Response Paradigm

Anton Benz, Nicole Gotzner

Centre for General Linguistics (ZAS)

Berlin

Disjunction Days 2.-3. June 2016

The issue: Embedded Implicature

Example

- ► Kate found her blue or her red marble.
- +> Scalar: Kate did not find her blue and her red marble.
- +> Clausal: $\lozenge / \lozenge \neg$ Kate did find her blue marble;
 - $\lozenge / \lozenge \neg$ Kate did find her red marble;

Un-embedded disjunctions:

- Not licensed if speaker knows world (cooperativity, quantity)
- ► Give rise to ignorance implicature

Aim:

- Experimental study of embedded disjunctions
- Context: Speaker knows exact state of world

Test sentences: Embedded Implicature of Disjunctions

- ► All of the girls found their red or their blue marble.
- ► Some of the girls found their red or their blue marble.
- ► All of the girls found their red, their blue, or their green marble.
- ► Some of the girls found their red, their blue, or their green marble.

Embedded Implicature

Test implicature of complex sentences:

- (A) the embedded exclusive reading of disjunction, e.g. $\forall (r \lor b) +> all \ either \ r \ or \ b;$
- (B) the global implicature: $\exists (r \lor b)$ and $\exists (r \lor b \lor g) +>$ none $r \land b$, none $r \land g$, and none $b \land g$;
- (C) the exhaustive implicature: $\forall (r \lor b)$ and $\exists (r \lor b) +>$ none found their green marble;
- (D) the *existence implicature* of the embedded disjunctions, for example $\forall (r \lor b) +> \text{all } (r \lor b)$ to some $r \land \text{some } b$.

Theoretical problem

Example (Items)

- 1. All of the girls found their red or their blue marble.
- 2. Some of the girls found their red or their blue marble.
- ► Chierchia (2004): (2) +> some $(r\dot{\lor}b)$ and \neg all $(r\lor b)$
- ► Sauerland (2004): (1) +> ¬ all $(r \land b)$
- ► Franke (2009):
 - (1) $+> \neg$ some $(r \land b)$
 - (2) +> some $(r \lor b)$ and \neg some $(r \land b)$
- ► Benz (2012): not addressed.

Theoretical problem

Example (Items)

- 1. All of the girls found their red or their blue marble.
- 2. Some of the girls found their red or their blue marble.
- 3. All of the girls found their red and their blue marble.
- 4. Some of the girls found their red and their blue marble.
- ▶ Franke (2009): (4) +> some $(r \land b)$ and \neg all $(r \lor b)$
- ▶ none: explanation of: none found their green marble.
- ▶ only Sauerland (2004): (1), (2) +> some r and some b.

Section 1

Previous Experimental Studies on Embedded Implicature)

Experiments on embedded implicature

Previous studies:

- Existence of embedded implicature still controversial
- ► Previous experimental paradigms show inconsistent findings and have all been criticized on methodological grounds
 Geurts & Pouscolous 2009. Chemla & Spector 2011, Geurts & v. Tiel 2013

Best response paradigm (Gotzner & Benz, in revision): Design goals

- Develop organic action-based task to avoid metalinguistic judgments
- Connect scenario to game-theoretic model to derive precise predictions for utterance interpretation in context
- Experimental evidence for embedded implicature of some (under every and some itself)

The best response paradigm: Methods

Scenario:

- 4 girls who each own a set of 4 special edition marbles;
- marbles get lost during play (Degen & Goodman, 2014)
- girls have to clean up and find their marbles
- ► mother offers rewards to girls

Reward system:

- chocolate: girl finds all 4 of her marbles
- candy: girl finds fewer than 4 of her marbles
- gummy bears: girl finds none of her marbles (consolation prize)

Instructions

- Mother tells participants how many marbles each girl found
- Task: Participants are asked to buy sweets for the girls

Example

Sentence: No girl found any of her marbles

Chocolate \square YES X No Candy \square YES X No

Gummy bear X YES \square No

Results

Section 2

Embedded Disjunctions in the Best Response Paradigm

Critical Items

Example (Items)

- 1. All of the girls found their red or their blue marble.
- 2. Some of the girls found their red or their blue marble.
- 3. All of the girls found their red, their blue, or their green marble.
- 4. Some of the girls found their red, their blue, or their green marble.

Experiment on disjunction under embedding

Methods

- Same task and instructions as in best response paradigm
- ► New reward system:
 - chocolate: all 3 marbles
 - candy: 2 marbles
 - gummy bear: 1 marble
 - green gummy bear: green marble
 - red gummy bear: red marble
 - blue gummy bear: blue marble
 - pretzel stick: 0 marbles

Results

Results

Section 3

A Model of the Experiment

The Experiment as Signalling Game

Playing the game:

- Mother = speaker knows actual world
- 2. Mother chooses an utterance
- 3. Subject chooses an action: buying sweets
- 4. Game ends
- ► Game structure common knowledge
- Game of pure coordination: preferences aligned

Preferences:

- Every girl should get her appropriate sweet
- No superfluous sweets should be bought

Possible Worlds Defined by Reward System

- ► 6 different rewards
- ► reward system distinguishes $2^6 1 = 63$ worlds
- with 4 girls $\sum_{i=1}^{4} {6 \choose i} = 56$ can be realised

pretzl	blue gb	green gb	red gb	candy	choc	world
1	1	1	1	0	0	
1	1	1	0	0	0	.
1	1	0	0	1	0	

Inferring Interpretation from Choice of Sweets

Example

- ► **Target:** All of the girls found their red or their blue marble.
- ► Choice: red & blue gummy bears.
- ▶ 24 worlds semantically consistent with target
- ▶ 1 world consistent with choice

pretzl	blue gb	green gb	red gb	candy	choc	cons
0	1	1	1	1	1	_
0	1	1	1	1	0	_
0	1	1	1	0	1	_
0	1	1	1	0	0	_
0	1	0	1	1	1	_
0	1	0	1	1	0	_
0	1	0	1	0	1	_
0	1	0	1	0	0	\checkmark

Effect of Epistemic Uncertainty

Example

- ► **Target:** All of the girls found their red or their blue marble.
- ► Choice: red & blue gummy bears.
- ▶ 3 additional information states consistent with choice

inf. state	pretzl	blue gb	green gb	red gb	candy	choc
ı	0	1	0	1	0	0
П	0	1	0	1	0	0
	0	1	0	0	0	0
III	0	1	0	1	0	0
	0	0	0	1	0	0
IV	0	1	0	0	0	0
	0	0	0	1	0	0

Evaluation of Result

Example

- ► Target: All of the girls found their red or their blue marble.
- ► Choice: red & blue gummy bears.

All information states verify:

- (A) the embedded exclusive reading: $\forall (r \lor b) +> all \ either \ r \ or \ b;$
- (C) the exhaustive implicature: $\forall (r \lor b) +> none found their green marble;$
- (D') the existence implicature: $\forall (r \lor b) +> \Diamond some r \land \Diamond some b$.
- With information state I only (world 11):
- (D) the full *existence implicature*: $\forall (r \lor b) +> \operatorname{some} r \land \operatorname{some} b$.

Inferring Interpretation from Choice of Sweets

Example

- ► **Target:** Some of the girls found their red or their blue marble.
- ► Choice: red & blue gummy bears, pretzels.
- 48 worlds semantically consistent with target
- ▶ 1 world consistent with choice

pretzl	blue gb	green gb	red gb	candy	choc	cons
1	1	1	1	1	1	_
1	1	1	1	1	0	_
1	1	1	1	0	1	_
1	1	1	1	0	0	_
1	1	0	1	1	1	_
1	1	0	1	1	0	_
1	1	0	1	0	1	_
1	1	0	1	0	0	\checkmark

Effect of Epistemic Uncertainty

Example

- ► Target: Some of the girls found their red or their blue marble.
- ► Choice: red & blue gummy bears, pretzels.
- ▶ 161 additional information states consistent with choice

inf. state	pretzl	blue gb	green gb	red gb	candy	choc
	1	1	0	1	0	0
	1	1	0	0	0	0
	1	0	0	1	0	0
	1	0	0	1	0	0
	0	1	0	1	0	0
	0	1	0	0	0	0
	0	0	0	1	0	0
	0	0	0	1	0	0

Evaluation of Result

Example

- ► Target: Some of the girls found their red or their blue marble.
- ► Choice: red & blue gummy bears, pretzels.

All information states verify:

- (A) the embedded exclusive reading: $\exists (r \lor b) +> some\ either\ r\ or\ b;$
- (B) the global implicature: $\exists (r \lor b) +> \text{none } r \land b$, none $r \land g$, and none $b \land g$;
- (C) the exhaustive implicature: $\exists (r \lor b) +> none found their green marble;$
- (D') the existence implicature: $\exists (r \lor b) +> \Diamond some r \land \Diamond some b$.

With information state { \bullet \bullet \}:

(D) the full *existence implicature*: $\forall (r \lor b) +> \operatorname{some} r \land \operatorname{some} b$.

Discussion

Evidence for:

- Embedded implicature of disjunction.
- Exhaustive reading of embedded disjunctions.
- Weak existence implicature.

Problem:

- No existing theory can account for all observed readings
- How to ensure experimentally that listener is certain about state of the world?

Thank you for your attention!

References I

[1] Anton Benz.

Implicatures of complex sentences in error models.

In Andrea Schalley, editor, *Practical theories and empirical practice*, pages 273–306. John Benjamins, Amsterdam, 2012.

[2] Emmanuel Chemla and Benjamin Spector.

Experimental evidence for embedded scalar implicatures.

Journal of Semantics, 28(3):359-400, 2011.

[3] Gennaro Chierchia.

Scalar implicatures, polarity phenomena, and the syntax / pragmatics interface.

In Adriana Belletti, editor, *Structures and Beyond*, pages 39–103. Oxford University Press, Oxford, 2004.

References II

[4] Judith Degen and Noah D. Goodman.

Lost your marbles? The puzzle of dependent measures in experimental pragmatics.

In Paul Bello, Marcello Guarini, Marjorie McShane, and Brian Scassellati, editors, *Proceedings of the 36th Annual Conference of the Cognitive Science Society*, pages 397–402, 2014.

[5] Michael Franke.

Signal to Act: Game Theory in Pragmatics.

PhD thesis, Universiteit van Amsterdam, 2009.

ILLC Dissertation Series DS-2009-11.

[6] Bart Geurts and Nausicaa Pouscoulous.

Embedded implicatures?!?

Semantics and Pragmatics, 2(4):1-34, July 2009.

References III

[7] Bart Geurts and Bob van Tiel.

Embedded scalars.

Semantics and Pragmatics, 6(9):1–37, 2013.

[8] Nicole Gotzner and Anton Benz.

The best response paradigm and a comparison of different models of implicatures of complex sentences.

ms., 2015.

[9] Uli Sauerland.

Scalar implicatures in complex sentences.

Linguistics and Philosophy, 27:367-391, 2004.