
BAYES NETS AND THE DYNAMICS OF PROBABILISTIC LANGUAGE

Representing confidence & ignorance. You are asked to predict the outcome of a competition—say, a
chess game between A and B—based on your background knowledge. Consider the following cases:

i) You know nothing at all about A and B.
ii) After watching many matches between A and B, you are confident that they are evenly matched.

In both cases, A and B are equally likely to win is an appropriate judgment—but for intuitively very different
reasons. It is widely assumed that the classical Bayesian theory, where an agent’s uncertainty is represented
by a unique measure, cannot account for this difference. Halpern [’03, §2.3] takes a similar case to motivate
the use of sets of measures or related enrichments: “probability is not good at representing ignorance”. Such
considerations have also led to widespread use of these devices in formal epistemology [Joyce’10, Elga’10].

However, de Finetti [’77]; Pearl [’88, §7.3] point out that the availability of hierarchical models, e.g.
Bayes nets, undercuts the intuitive motivation for this more complex representation. These models are used
in many modern applications in statistics, AI, and psychology. Probabilities derive from graphs representing
causal relations sets of variables, together with the conditional distribution on each variable given its parents.
Bayes nets readily represent the two kinds of uncertainty: see Fig.1a. Player i’s performance is a Gaussian
with parameters µi (skill) and σ j (consistency). Each parameter’s parents represent uncertainty about causal
factors. P(A beats B) is the probability that A’s noisy performance exceeds B’s, here equal to P(µA > µB).
There is always a precise best guess about µA−µB, but confidence depends on the amount of evidence: low
when only general domain knowledge is available, and high when evidence indicates equal skill (Fig. 1b).

Communicating uncertainties. Recent work suggests that likely, probable, and perhaps other epistemic
operators have a probabilistic semantics as in (1) [Yalcin’05,’07, Swanson’06, Lassiter’10]. If so, we need a
model of the way that people take up the information in probability statements, as in dialogue (2). Carl has
learned something here, but what? Conditioning won’t do: ‘P(rain) > .5’ does not pick out a set of worlds,
and P(⋅ ∣ P(rain) > .5) is not even defined. Yalcin’s [’12] approach involves a dynamic semantics/pragmatics
using sets of measures. Update by φ is likely eliminates measures µ where µ(φ) ≯ .5, cf. (3).

There are several reasons to revisit this update procedure. The ability of Bayes nets to represent degrees
of ignorance calls into question whether the added complexity of sets of measures is ever needed; decision-
theoretic considerations also create difficulties [Elga’10]. Second, Yalcin’s update procedure is obliged
to use special devices for probabilistic language. Third, the procedure deals with the communication of
known uncertainties—e.g., the color of a ball drawn with even probability from one of two urns of known
composition—only if we use sets of measures to represent these cases as well, violating the spirit of the
argument from ignorance. I propose to modify the probabilistic semantics, relativizing probability statements
not to a measure P but to a Bayes net B, as in (4). Suppose φ is a value of variable V . Each world w is
associated with a ‘local probability’ function Pw taking φ to its conditional probability given the values,
at w, of the parents of V’s closest non-deterministic ancestors. Associating probabilistic statements with
sets of worlds makes it possible to condition on them, simplifying the dynamics dramatically: all update is
conditionalization. For example, conditioning on “B is likely to win” (2b) assigns zero mass to worlds where
the parents of the closest non-deterministic ancestors of winner—µA,σA,µB, and σB—do not interact so as
to favor B’s victory: see (5) and Fig.2. The result is that we condition on B’s strength exceeding A’s—the
intuitively correct result—and the choice of this conditioning expression is generated by a fully compositional
procedure. Ongoing work suggests that this semantics also yields reasonable predictions for epistemics in
conditionals and under other epistemics, such as definitely possible and probably unlikely (cf. [Moss’15]).

While many formal and empirical questions remain, we suggest that formal models of communication &
reasoning could benefit from increased engagement with the representations used in applied Bayesian work.



(1) JlikelyKP = λφ⟨s,t⟩.P(φ) > .5

(2) a. Carl: Who is going to win the chess
game between A and B?

b. David: B is likely to win.

(3) ICarl Ô⇒
learn (2b)

ICarl∩{µ ∣ µ(B wins) > .5}

(4) JlikelyKB = λφ⟨s,t⟩.{w ∣ Pw(φ) > .5}

(5) PCarl Ô⇒
learn (2b)

PCarl(⋅ ∣ {w ∣ Pw(B wins) > .5})

winner

perf j

µ j

∀i ∶ µi ∼N(0,1)

σ j

∀i ∶ σi = .1

perf k

µk σk

(a) Hierarchical model of player performance in a single
match, inspired by the Microsoft Trueskill system used
to rank Xbox Live players [Bishop’13]. Each per f i has
a N(µi,σi) distribution. B wins is a deterministic node,
true iff per f B > per f A.
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(b) Top left: some of the ∞ candidate performance distri-
butions varying with µi. Right: marginal on performance.
Bottom: distributions on per f j − per f k. Both are cen-
tered on 0, so that P(A wins) = P(B wins) = .5. Case (i)
[left] is the prior; case (ii) [right] is conditional on each
player winning 15 of 30 matches. Increased confidence is
reflected in lower variance of the expected difference.
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Figure 2: See right for caption.

Figure 2 caption: Conditioning on {w ∣ Pw(B wins) > .5}
eliminates combinations of immediately causally relevant
variables that do not make B wins likely, given the condi-
tional probability information encoded by the Bayes net.
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