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Interaction of normative and empirical work (Pfeifer, 2011, 2012b)

Normative work
(formal analyses)

Empirical work
(e.g., psy. experiments)

suggests new empirical hypotheses

provides rationality norms

empirical evaluation

suggests new formal systems

arbitration



Why not classical logic?

▸ unable to deal with degrees of belief

▸ unable to deal with nonmonotonicity

▸ interpreting natural language conditionals by the material
conditional (⋅ ⊃ ⋅) is highly problematic



Truth tables
Negation:
A not-A

¬A
T F
F T

Samples of other connectives:
A B A and B A or B If A, then B A iff B B given A

A ∧ B A ∨B A ⊃ B A ≡ B
T T T T T T
T F F T F F
F T F T T F
F F F F T T

“If two people are arguing ‘If p will q?’ and are both in doubt as
to p, they are adding p hypothetically to their stock of knowledge
and arguing on that basis about q; . . .We can say they are fixing
their degrees of belief in q given p. If p turns out false, these
degrees of belief are rendered void” (Ramsey, 1929/1994, footnote, p. 155).
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Mental probability logic (Pfeifer, 2006b, 2012a, 2012b, 2014, 2013a; Pfeifer & Kleiter, 2005b)

▸ competence

▸ uncertain indicative If A, then C is interpreted as P(C ∣A)
▸ C ∣A is partially truth-functional (void, if A is false and
undefined if A is a logical contradiction)

▸ arguments: ⟨ premise(s) , conclusion ⟩
▸ premises contain:

▸ probabilistic and/or logical information
▸ background knowledge (if available)

▸ uncertainty is transmitted deductively from the premises to
the conclusion

▸ mental process: check if argument is probabilistically
informative

▸ if no: STOP ([0,1] is coherent)
▸ if yes: transmit the uncertainty from the premises to the
conclusion

▸ rationality framework: coherence-based probability logic
framework
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▸ Coherence

▸ de Finetti, and {Coletti, Gilio, Lad, Regazzini, Sanfilippo,
Scozzafava, Vantaggi, Walley, . . . }

▸ degrees of belief
▸ complete algebra is not required
▸ many probabilistic approaches define P(B ∣A) by

P(A ∧B)

P(A)
and assume that P(A) > 0

what if P(A) = 0?
in the coherence approach, conditional probability, P(B ∣A), is
primitive

▸ zero probabilities are exploited to reduce the complexity
▸ imprecision
▸ bridges to possibility, DS-belief functions, fuzzy sets,
nonmonotonic reasoning (System P (Gilio, 2002)), . . .

▸ Probability logic
▸ uncertain argument forms
▸ deductive consequence relation
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Bayes’ theorem

. . . as an uncertain argument form:

(Premise 1) p(B ∣A) = x
(Premise 2) p(A) = y
(Premise 3) p(B) = z
(Conclusion) p(A∣B) = xy/z

. . . as a (probability-logical) rule of inference:

From p(B ∣A) = x , p(A) = y , and p(B) = z infer p(A∣B) = xy/z .
Observation: Bayes’ theorem is one of many important theorems
for “probabilistic experimental pragmatics.”



E.g.: Probabilistic modus ponens (e.g., Hailperin, 1996; Pfeifer & Kleiter, 2006a)

Modus ponens Probabilistic modus ponens
(Conditional event) (Material conditional)

If A, then C p(C ∣A) = x p(A ⊃ C) = x
A p(A) = y p(A) = y
C xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x

xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x



E.g.: Probabilistic modus ponens (e.g., Hailperin, 1996; Pfeifer & Kleiter, 2006a)

Modus ponens Probabilistic modus ponens
(Conditional event) (Material conditional)

If A, then C p(C ∣A) = x p(A ⊃ C) = x
A p(A) = y p(A) = y
C xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x

xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x
. . . where the consequence relation (“———”) is deductive.



E.g.: Probabilistic modus ponens (e.g., Hailperin, 1996; Pfeifer & Kleiter, 2006a)

Modus ponens Probabilistic modus ponens
(Conditional event) (Material conditional)

If A, then C p(C ∣A) = x p(A ⊃ C) = x
A p(A) = y p(A) = y
C xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x

xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x
. . . where the consequence relation (“———”) is deductive.
. . . interpretation of “if–then” matters!



Example 2: Probabilistic modus ponens (e.g., Hailperin, 1996)

Modus ponens Probabilistic modus ponens
(Conditional event) (Material conditional)

If A, then C p(C ∣A) = .90 p(A ⊃ C) = .90
A p(A) = .50 p(A) = .50
C .45 ≤ p(C) ≤ .95 .40 ≤ p(C) ≤ .90

xy ≤ p(C) ≤ xy + 1 − x max{0, x + y − 1} ≤ p(C) ≤ x
. . . where the consequence relation (“———”) is deductive.
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Premise 1
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Conclusion



From probability logic to probabilisitic pragmatics

Consider a probability logical argument with n premises:

Premise 1 Ô⇒ . . . what the speaker says
. . . . . . . . .
Premise n Ô⇒ . . . what the speaker says
Conclusion Ô⇒ . . . what the listeners hears/infers
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Sample paradoxes of the material conditional (Pfeifer, 2014, Studia Logica)

Paradoxes of the material conditional, e.g.,

(Paradox 1) (Paradox 2)
P(B) = x P(¬A) = x

0 ≤ P(B ∣A) ≤ 1 0 ≤ P(B ∣A) ≤ 1

probabilistically non-informative

This matches the data (Pfeifer & Kleiter, 2011).

Paradox 1: Special case covered in the coherence approach, but
not covered in the standard approach to probability:

If P(B) = 1, then P(A ∧ B) = P(A). Thus,
P(B ∣A) = P(A∧B)

P(A) =
P(A)
P(A)= 1, if P(A) > 0.
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Inf. vers. of t. paradoxes (Pfeifer (2014). Studia Logica; Pfeifer and Douven (2014). Rev. Phil. Psy.)

From Pr(B) = 1 and A ∧ B ≡ � infer Pr(B ∣A) = 0 is coherent.

From Pr(B) = 1 and A ⊃ B ≡ ⊺ infer Pr(B ∣A) = 1 is coherent.

From Pr(B) = x and Pr(A) = y infer

max{0, x + y − 1

y
} ⩽ Pr(B ∣A) ⩽ min{x

y
,1} is coherent.

. . . a special case of the cautious monotonicity rule of System P
(Gilio, 2002).
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P(A ∧ C) = x1 = .25
P(A ∧ ¬C) = x2 = .25
P(¬A ∧ C) = x3 = .25

P(¬A ∧ ¬C) = x4 = .25

P(If A, then C) = ?

Conclusion candidates:

▸ P(A ∧C) = x1 = .25
▸ P(C ∣A) = x1/(x1 + x2) = .50
▸ P(A ⊃ C) = x1 + x3 + x4 = .75
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Probabilistic truth table task (Evans et al., 2003; Oberauer & Wilhelm, 2003)

P(A ∧ C) = x1
P(A ∧ ¬C) = x2
P(¬A ∧ C) = x3

P(¬A ∧ ¬C) = x4
P(If A, then C) = ?

Main results:

▸ More than half of the responses are consistent with P(C ∣A)
▸ Many responses are consistent with P(A ∧ C)
▸ Generalized version: Interpretation shifts to P(C ∣A) (Fugard, Pfeifer,

Mayerhofer, & Kleiter, 2011a, Journal of Experimental Psychology: LMC)

Key feature:

▸ Reasoning under complete probabilistic knowledge



Experiment

Motivation

▸ probabilistic truth table task with incomplete probabilistic
knowledge

▸ Is the conditional event interpretation still dominant?

▸ Are there shifts of interpretation?
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Illustrated here are all sides of a six-sided die. The sides have two
properties: a color (black or white) and a shape (circle, triangle, or
square). Question marks indicate covered sides.

? ?

Imagine that this die is placed in a cup. Then the cup is randomly
shaken. Finally, the cup is placed on the table so that you cannot
see what side of the die shows up.
Question: How sure can you be that the following sentence holds?

If the side facing up shows white, then the side shows a square.

Answer: Mat. cond.: at least 2 out of 6 and at most 4 out of 6
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Experiment (Pfeifer, 2013a, Thinking & Reasoning)

Set-up
▸ 20 tasks, three “warming-up tasks”
▸ all tasks differentiate between material conditional,
conjunction, and conditional event interpretation

Sample
▸ 20 Cambridge University students
▸ 10 female, 10 male
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Set-up

▸ 20 tasks, three “warming-up tasks”

▸ all tasks differentiate between material conditional,
conjunction, and conditional event interpretation

Results

▸ Overall (340 interval responses)
▸ 65.6% consistent with conditional event
▸ 5.6% consistent with conjunction
▸ 0.3% consistent with material conditional

▸ Shift of interpretation
▸ First three tasks: 38.3% consistent with conditional event
▸ Last three tasks: 83.3% consistent with conditional event
▸ Strong correlation between conditional event frequency and
item position (r(15) = 0.71, p < 0.005)
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Further observations

▸ Conditional probability responses are also clearly dominant in
PTT tasks using counterfactuals (Pfeifer & Stöckle-Schobel, 2015) and . . .
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▸ Apparent pragmatic/relevance effect when “packed” (e.g., “If
the card shows a 2, then the card shows an even number”)
and “unpacked” (“If the card shows a 2, then the card shows
a 2 or a 4”) conditionals are compared:
Most people judge (correctly) p(even∣x = 2) = 1



Further observations

▸ Conditional probability responses are also clearly dominant in
PTT tasks using counterfactuals (Pfeifer & Stöckle-Schobel, 2015) and . . .

▸ . . . in causal scenarios (Pfeifer & Stöckle-Schobel, 2015).

▸ Apparent pragmatic/relevance effect when “packed” (e.g., “If
the card shows a 2, then the card shows an even number”)
and “unpacked” (“If the card shows a 2, then the card shows
a 2 or a 4”) conditionals are compared:
Most people judge (correctly) p(even∣x = 2) = 1
but (incorrectly) p(x = 2 ∨ x = 4∣x = 2) = 0
(Fugard, Pfeifer, & Mayerhofer, 2011).
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System P: Rationality postulates for nonmonotonic

reasoning (Kraus, Lehmann, & Magidor, 1990)

Reflexivity (axiom): α∣∼α
Left logical equivalence:

from ⊧ α ≡ β and α∣∼γ infer β∣∼γ
Right weakening:

from ⊧ α ⊃ β and γ∣∼α infer γ∣∼β
Or: from α∣∼γ and β∣∼γ infer α ∨ β∣∼γ
Cut: from α ∧ β∣∼γ and α∣∼β infer α∣∼γ
Cautious monotonicity:

from α∣∼β and α∣∼γ infer α ∧ β∣∼γ
And (derived rule): from α∣∼β and α∣∼γ infer α∣∼β ∧ γ
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Probabilistic version of System P (Gilio (2002); Table 2 Pfeifer and Kleiter (2009))

Name Probability logical version

Left logical equivalence ⊧(E1 ≡ E2),P(E3∣E1) = x ∴ P(E3∣E2) = x
Right weakening P(E1∣E3) = x ,⊧(E1 ⊃ E2) ∴ P(E2∣E3) ∈ [x ,1]
Cut P(E2∣E1 ∧ E3) = x ,P(E1∣E3) = y

∴ P(E2∣E3) ∈ [xy ,1 − y + xy]
And P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E2 ∧ E3∣E1) ∈ [max{0, x + y − 1},min{x , y}]
Cautious monotonicity P(E2∣E1) = x ,P(E3∣E1) = y

∴ P(E3∣E1 ∧ E2) ∈ [max{0, (x+y−1)/x},min{y/x ,1}]
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C1 P [Fly(Tweety)] = .95. (Tweety can normally fly.)
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(Tweety is a penguin.)
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Name Formalization

Transitivity A→ B ,B → C , therefore A→ C
P(B ∣A) = x ,P(C ∣B) = y ∴ P(C ∣A)∈ [0,1]

Right weakening P(B ∣A) = x ,⊧(B ⊃ C) ∴ P(C ∣A) ∈ [x ,1]
Cut P(B ∣A) = x ,P(C ∣A∧B) = x ,

∴ P(C ∣A) ∈ [xy ,1 − x + xy]

▸ Experimental result: Right weakening is endorsed by almost
all participants (Pfeifer & Kleiter, 2006b, 2010)

▸ Observation: Deleting “A” in Cut yields Modus Ponens.

▸ Experimental result: Non-probabilistic tasks: endorsement
rate of 89–100% (Evans et al., 1993); probabilistic tasks: 63%-100%
coherent responses (Pfeifer & Kleiter, 2007)
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The Transitivity Task interpreted as Cut (Pfeifer & Kleiter, 2006b)

Please imagine the following situation:

Exactly 99% of the cars on a big parking lot are blue.
Exactly 63% of blue cars that are on the big parking lot

have grey wheel rims.

Imagine all the cars that are on the big parking lot. How many of
these cars have grey wheel rims?

(Adams, 1975; Bennett, 2003)



Results: Transitivity. . . “as Cut” (Pfeifer & Kleiter, 2006b)

0% 100%

coherent interval

63.14%

3.93% 20.00%

2.50%6.43%

5.00%

averaged interval response frequencies, 14 tasks, n = 20
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Concluding remarks

▸ Coherence-based probability logic as a rationality framework for a
“probabilistic experimental pragmatics”

▸ Premises represent what the speaker says and conclusions represent
what the hearer infers

▸ Interpret conditionals by conditional probabilities:
▸ to avoid paradoxes
▸ to withdraw conclusions in the light of new evidence

▸ Most people draw coherent inferences. Specifically:
▸ Conditional probability responses are consistently the dominant
responses in the paradox tasks, the probabilistic truth table tasks, and
the nonmonotonic reasoning tasks

▸ True interaction of formal and empirical work: opens interdisciplinary
collaborations

▸ Long term goal: Theory of uncertain inference which is
normatively and descriptively adequate

Papers available at: www.pfeifer-research.de
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Properties of arguments

An argument is a pair consisting of a premise set and a conclusion.

▸ An argument is logically valid if and only if it is impossible
that all premises are true and the conclusion is false.

▸ An argument is p-valid if and only if the uncertainty of the
conclusion of a valid inference cannot exceed the sum of the
uncertainties of its premises (where “uncertainty of X” is
defined by 1 −P(X )) (Adams, 1975).

▸ An argument is probabilistically informative if and only if it is
possible that the premise probabilities constrain the conclusion
probability. I.e., if the coherent probability interval of its
conclusion is not necessarily equal to the unit interval [0,1]
(Pfeifer & Kleiter, 2006a).
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▸ frequency-based semantics (Pfeifer, 2006a)

▸ coh.-based prob. semantics (Pfeifer, Sanfilippo, & Gilio, 2016)

▸ square of opposition (Pfeifer & Sanfilippo, in press)

▸ Relation to formal epistemology (Pfeifer, 2012b; Pfeifer & Douven, 2014)
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▸ In logic

from A ⊃ B infer (A ∧ C) ⊃ B

▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(B ∣A ∧C) ≤ 1
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Example 1: (Cautious) monotonicity

▸ In logic

from A ⊃ B infer (A ∧ C) ⊃ B

▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(B ∣A ∧C) ≤ 1

But: from P(A ⊃ B) = x infer x ≤P((A ∧C) ⊃ B) ≤ 1

▸ Cautious monotonicity (Gilio, 2002)

from P(B ∣A) = x and P(C ∣A) = y

infer max(0, (x + y − 1)/x) ≤ P(C ∣A ∧B) ≤ min(y/x ,1)



Example task: Monotonicity (Pfeifer & Kleiter, 2003)

About the guests at a prom we know the following:

exactly 72% wear a black suit.
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Example task: Cautious monotonicity (Pfeifer & Kleiter, 2003)

About the guests at a prom we know the following:

exactly 72% wear a black suit.
exactly 63% wear glasses.

Imagine all the persons of this prom who wear glasses.

How many of the persons wear a black suit,
given they are at this prom and wear glasses?



Results – Monotonicity (Example Task 1; Pfeifer and Kleiter (2003))
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Example 2: Contraposition

▸ In logic
from A ⊃ B infer ¬B ⊃ ¬A
from ¬B ⊃ ¬A infer A ⊃ B
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Example 2: Contraposition

▸ In logic
from A ⊃ B infer ¬B ⊃ ¬A
from ¬B ⊃ ¬A infer A ⊃ B

▸ In probability logic

from P(B ∣A) = x infer 0 ≤ P(¬A∣¬B) ≤ 1
from P(¬A∣¬B) = x infer 0 ≤ P(B ∣A) ≤ 1

▸ But

P(A ⊃ B)=P(¬B ⊃ ¬A)



Results Contraposition (n1 = 40, n2 = 40; Pfeifer and Kleiter (2006b))
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Pfeifer, N., & Stöckle-Schobel, R. (2015). Uncertain conditionals
and counterfactuals in (non-)causal settings. In G. Arienti,
B. G. Bara, & S. G. (Eds.), Proceedings of the
Euroasianpacific joint conference on cognitive science (4th

European conference on cognitive science; 10th international
conference on cognitive science) (Vol. 1419, pp. 651–656).
Aachen: CEUR Workshop Proceedings. Retrieved from
http://ceur-ws.org/Vol-1419/paper0108.pdf

Ramsey, F. P. (1929/1994). General propositions and causality
(1929). In D. H. Mellor (Ed.), Philosophical papers by F. P.
Ramsey (p. 145-163). Cambridge: Cambridge University
Press.

http://ceur-ws.org/Vol-1419/paper0108.pdf

	Introduction
	Disciplines & interaction of normative and empirical work 
	Mental probability logic

	Paradoxes of the material conditional
	Probabilistic truth tables
	Nonmonotonic reasoning
	Concluding remarks

