The best response: Speaker rationality in an interactive paradigm

Anton Benz, Nicole Gotzner

Centre for General Linguistics (ZAS)
Berlin

Workshop on Rationality, Probability and Pragmatics
25.-27. May 2016
Section 1

Implicature in Complex Sentences
Scalar Implicature and Implicature of Complex Sentences

Example (Unembedded implicature trigger)
1. **Some** of the girls found marbles.
 \[\Rightarrow \] Not all found marbles.

Example (Embedded implicature trigger)
1. **Every** girl found **some** of their marbles.
The Standard Theory
Levinson (1983)

Example (Unembedded implicature trigger)

Some of the girls found marbles. \(= A(\text{some})\)
\(\implies\) Not all girls found marbles.

Reasoning:
- \(A(\text{all})\) : would have been more informative
- Speaker didn’t say \(A(\text{all})\) but \(A(\text{some})\)
- Hence, he must believe \(\neg A(\text{some})\)
- Cooperativity + competence \(\Rightarrow \neg A(\text{some})\)

Horn scales: \(\{\text{all, some}\}, \{\text{and, or}\},...\)
Embedded Implicature

Example

1. Every girl found some of her marbles.
2. Some of the girls found some of their marbles.

Variously predicted readings:
(Chierchia 2004, Sauerland 2004, Chierchia et al 20012)

1. Every girl found some of her marbles.
 — literal: Every girl found some and possibly all of her marbles.
 — global: Not every girl found all of her marbles.
 — local: Every girl found some but not all of her marbles.

2. Some of the girls found some of their marbles.
 — glob/loc: Not all of the girls found some of their marbles.
 — glob: None of the girls found all of her marbles.
Interactional approaches:

- Bergen et al. (in print), Potts et al. (in print): Bayesian Models.

Problem:

- GT provides no technique for analysing linguistic structure.
- Seems to be confined to a globalist approach.
Aims of this Talk

- Present a specific model of implicature in complex sentences.
- Introduce new interactive experimental paradigm for testing the model.
- Evaluate experimental results/different speaker strategies.
Section 2

Error Models
Communication as stochastic process (Shannon 1948).

\[P(\varphi) \xrightarrow{F} S_F(F|\varphi) \xrightarrow{H} H(\psi|F) \]
Error Models

Benz 2012

- Communication as stochastic process (Shannon 1948).

\[
\begin{align*}
\text{Intentions} & \rightarrow \text{Signal} & \rightarrow \text{Interpretation} \\
\mathcal{L} & \rightarrow \mathcal{F} & \rightarrow \mathcal{L}
\end{align*}
\]

- Implicature

- If hearer can uniquely recover intended message \(\Rightarrow\) Success.
- If not \(\Rightarrow\) Clarification request.
Error Models: Critical Example

The Role of Errors

Example (Bus Ticket)

An email was sent to all employees that bus tickets for a joint excursion have been bought and are ready to be picked up. By mistake, no contact person was named. Hence, H asks one of the secretaries:

H: Where can I get the bus tickets for the excursion?

S: Ms. Müller is sitting in office 2.07. ($U_{M2.07}$)

\Rightarrow Bus tickets are available from Ms. Müller.

Problem:

- Hearer finds list with all room numbers of all employees.
 \(\Rightarrow\) Goes to 2.07.

\(\Rightarrow\) Literal content not enough for inducing hearer to choose intended action.
A Game Tree

Problem: \(EU(go-2.07 | [U_{M2.07}]) = EU(search | [U_{M2.07}]) = \varepsilon. \)

Implies: Literal content is irrelevant.
How it should have been played

- Literal content is deciding optimal action.
- In Example speaker omitted part of message.
Omitting Part of Message

- Literal content is deciding optimal action.
- In Example speaker omitted part of message.
Consider for each state of affairs the optimal assertions.

Consider all utterances which can result from omitting a conjunct of message.

⇒ Noise (\mathcal{N}_φ)

Consider the reduced utterances from which the original message can be reconstructed. (\mathcal{U}_φ)

<table>
<thead>
<tr>
<th>φ</th>
<th>$\text{Lit}(\varphi)$</th>
<th>\mathcal{N}_φ</th>
<th>\mathcal{U}_φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_{M \text{ has}/2.07}$</td>
<td>$U_{M \text{ has}/2.07}$</td>
<td>$U_{M \text{ has}/2.07}, F_{M \text{ has}}, U_{M/2.07}$</td>
<td>$U_{M/2.07}$</td>
</tr>
<tr>
<td>$\varphi_{M \text{ has}/3.11}$</td>
<td>$F_{M \text{ has}/3.11}$</td>
<td>$F_{M \text{ has}/3.11}, F_{M \text{ has}}, F_{M/3.11}$</td>
<td>$F_{M/3.11}$</td>
</tr>
<tr>
<td>$\varphi_{S \text{ has}/2.07}$</td>
<td>$F_{S \text{ has}/3.11}$</td>
<td>$F_{S \text{ has}/3.11}, F_{S \text{ has}}, F_{S/3.11}$</td>
<td>$F_{S/3.11}$</td>
</tr>
<tr>
<td>$\varphi_{S \text{ has}/3.11}$</td>
<td>$U_{S \text{ has}/3.11}$</td>
<td>$U_{S \text{ has}/3.11}, F_{S \text{ has}}, F_{S/3.11}$</td>
<td>$F_{S/3.11}$</td>
</tr>
</tbody>
</table>
Characteristics

- Uniform explanation of relevance and quantity implicature
- No gambling: short utterances communicate message with certainty
- No blocking: preference for short utterances does not lead to risky utterances
- No hidden semantic operators
Testing for Implicature by Decision Making

The basic best response paradigm
Nicole Gotzner & Anton Benz
Scenario

Background:
- 4 girls who each own a set of 4 special edition marbles (Degen & Goodman, 2014);
- marbles get lost during play and girls have to find them
- mother offers rewards to girls

Reward system:
- chocolate: girl finds all 4 of her marbles
- candy: girl finds fewer than 4 of her marbles
- gummy bears: girl finds none of her marbles (consolation prize)
Instructions

- Mother tells participants how many marbles each girl found
- Task: Participants are asked to buy sweets for the girls

Example

Sentence: **No girl found any of her marbles**

<table>
<thead>
<tr>
<th>Sweets</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocolate</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>Candy</td>
<td>X</td>
<td>Yes</td>
</tr>
<tr>
<td>Gummy bear</td>
<td>Yes</td>
<td>X</td>
</tr>
</tbody>
</table>
The Experiment as Signalling Game

Playing the game:
1. Mother = speaker knows actual world
2. Mother chooses an utterance
3. Subject chooses an action: buying sweets
4. Game ends

- Game structure common knowledge
- Game of pure coordination: preferences aligned

Preferences:
- Every girl should get her appropriate sweet
- No superfluous sweets should be bought
Seven possible worlds

- $\exists \nexists$: Some found none
- $\exists \exists^!$: Some found some but not all
- $\exists \forall$: Some found all

<table>
<thead>
<tr>
<th>\exists</th>
<th>\nexists</th>
<th>$\exists^!$</th>
<th>\forall</th>
<th>world</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$v_1 = \text{[1]}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$v_2 = \text{[2]}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$v_3 = \text{[3]}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$v_4 = \text{[4]}$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$v_5 = \text{[5]}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$v_6 = \text{[6]}$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$v_7 = \text{[7]}$</td>
</tr>
</tbody>
</table>
Seven possible actions

Actions

- ▶️: Gummy bear
- ▶️: Candy
- ▶️: Chocolate

Best responses

<table>
<thead>
<tr>
<th>world</th>
<th>act</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1 = []</td>
<td>◼ —</td>
</tr>
<tr>
<td>v_2 = []</td>
<td>◼ —</td>
</tr>
<tr>
<td>v_3 = []</td>
<td>◼ —</td>
</tr>
<tr>
<td>v_4 = []</td>
<td>◼ —</td>
</tr>
<tr>
<td>v_5 = []</td>
<td>◼ —</td>
</tr>
<tr>
<td>v_6 = []</td>
<td>◼ —</td>
</tr>
<tr>
<td>v_7 = []</td>
<td>◼ —</td>
</tr>
</tbody>
</table>
Effect of Uncertainty

Best responses

<table>
<thead>
<tr>
<th>world</th>
<th>act</th>
<th>world</th>
<th>act</th>
<th>world</th>
<th>act</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 1, □ 2</td>
<td></td>
<td>□ 2, □ 4</td>
<td></td>
<td>□ 1, □ 2</td>
<td></td>
</tr>
<tr>
<td>□ 1, □ 3</td>
<td></td>
<td>□ 2, □ 6</td>
<td></td>
<td>□ 2, □ 3</td>
<td></td>
</tr>
<tr>
<td>□ 2, □ 3</td>
<td></td>
<td>□ 3, □ 5</td>
<td></td>
<td>□ 3, □ 6</td>
<td></td>
</tr>
<tr>
<td>□ 1, □ 4</td>
<td></td>
<td>□ 3, □ 6</td>
<td></td>
<td>□ 3, □ 6</td>
<td></td>
</tr>
<tr>
<td>□ 1, □ 5</td>
<td></td>
<td>□ 3, □ 6</td>
<td></td>
<td>□ 3, □ 6</td>
<td></td>
</tr>
</tbody>
</table>

- In all other cases:
Error Models for Complex Sentences

Different alternatives:

▶ Alternative utterances constructed from worlds.

Literal descriptions of worlds:

<table>
<thead>
<tr>
<th>world</th>
<th>utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$U_{\forall \mid \exists}$</td>
</tr>
<tr>
<td></td>
<td>$U_{\exists \mid \forall}$</td>
</tr>
<tr>
<td>2</td>
<td>$U_{\forall \mid \exists !}$</td>
</tr>
<tr>
<td></td>
<td>$U_{\exists \mid \forall !}$</td>
</tr>
<tr>
<td>3</td>
<td>$U_{\forall \mid \exists}$</td>
</tr>
<tr>
<td></td>
<td>$U_{\exists \mid \forall}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>world</th>
<th>utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$U_{\exists \mid \exists !} \land U_{\exists \mid \exists !} \land U_{\exists \mid \exists !}$</td>
</tr>
<tr>
<td>5</td>
<td>$U_{\exists \mid \exists !} \land U_{\exists \mid \exists !} \land U_{\exists \mid \exists !}$</td>
</tr>
<tr>
<td>6</td>
<td>$U_{\exists \mid \exists !} \land U_{\exists \mid \exists !} \land U_{\exists \mid \exists !} \land U_{\exists \mid \exists !}$</td>
</tr>
<tr>
<td>7</td>
<td>$U_{\exists \mid \exists !} \land U_{\exists \mid \exists !} \land U_{\exists \mid \exists !} \land U_{\exists \mid \exists !}$</td>
</tr>
</tbody>
</table>

▶ $U_{Q \mid Q'}$: Q of the girls found Q' of the marbles.

▶ $\exists^!$: some but not all, $\not\exists$: none
Error Models for Complex Sentences

- Shorter utterances constructed by elimination rules

Elimination rules:

1. $U(∃!)$ → $U(∃)$: reduction of ‘some but not all’ to ‘some’
2. $U_∩α ∧ U_β$ → $U_β$: elimination of conjuncts with empty subjects

Restrictions:

- Rule U_x → U_y only applicable if $[[U_x]] ⊆ [[U_y]]$
- Requirement: unique recoverability of meaning (long story)
Application of Elimination rules

Literal descriptions of worlds:

<table>
<thead>
<tr>
<th>1</th>
<th>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</td>
</tr>
<tr>
<td>3</td>
<td>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</td>
</tr>
<tr>
<td>4</td>
<td>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</td>
</tr>
<tr>
<td>5</td>
<td>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</td>
</tr>
<tr>
<td>6</td>
<td>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</td>
</tr>
<tr>
<td>7</td>
<td>(\exists \neq \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r} \land \exists \mathcal{r})</td>
</tr>
</tbody>
</table>
Application of Elimination rules

Elimination of ‘none of the girls . . . :

<table>
<thead>
<tr>
<th>world</th>
<th>utterances</th>
<th>world</th>
<th>utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$U_{\exists \not \in}$</td>
<td>5</td>
<td>$U_{\exists i \in} \land U_{\exists i \not \in}$</td>
</tr>
<tr>
<td>2</td>
<td>$U_{\exists \in i}$</td>
<td>6</td>
<td>$U_{\exists i \in} \land U_{\exists i \not \in}$</td>
</tr>
<tr>
<td>3</td>
<td>U_{\forall}</td>
<td>7</td>
<td>$U_{\exists i \in} \land U_{\exists i \in} \land U_{\exists i \not \in}$</td>
</tr>
<tr>
<td>4</td>
<td>$U_{\exists i \not \in} \land U_{\exists i \not \in}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application of Elimination rules

Elimination of some but not all:

<table>
<thead>
<tr>
<th>World</th>
<th>Utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 1</td>
<td>$U_{\forall \neg \exists}$</td>
</tr>
<tr>
<td>□ 2</td>
<td>$U_{\forall \exists}$</td>
</tr>
<tr>
<td>□ 3</td>
<td>$U_{\forall \forall}$</td>
</tr>
<tr>
<td>□ 4</td>
<td>$U_{\exists \neg \exists} \land U_{\exists \forall}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>World</th>
<th>Utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 5</td>
<td>$U_{\exists \neg \exists} \land U_{\exists \forall}$</td>
</tr>
<tr>
<td>□ 6</td>
<td>$U_{\exists \exists} \land U_{\exists \forall}$</td>
</tr>
<tr>
<td>□ 7</td>
<td>$U_{\exists \exists} \land U_{\exists \exists} \land U_{\exists \forall}$</td>
</tr>
</tbody>
</table>
Application of Elimination rules

Predicted maximal simplification:

<table>
<thead>
<tr>
<th></th>
<th>world</th>
<th>utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$U_\exists \not\exists$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$U_\exists \exists$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$U_\forall \forall$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$U_\exists \not\exists \land U_\forall \exists$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>world</th>
<th>utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>$U_\exists \not\exists \land U_\forall \exists$</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$U_\exists \exists \land U_\forall \exists$</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>$U_\exists \not\exists \land U_\exists \exists \land U_\forall \exists$</td>
</tr>
</tbody>
</table>
Testable predictions:

- utterance length increases with complexity of world.
- critical strategy not less efficient than average human strategy.
- strategy is efficient:
 - increasing average utterance length does not increase communicative success.
 - decreasing average length should decrease communicative success (??)
 (claim in general probably not correct, however, we expected it in marble scenario)
Section 4

The interactive best response paradigm

Anton Benz & Nicole Gotzner
The interactive best response paradigm

- Participants play best response paradigm in groups, taking two different roles (speaker and hearer)
- **Speaker’s task**: Describe state of the world represented by picture
- **Response options**: all, some, none, some but not all, some and possibly all, any (up to 5 sentences)
Hearer’s task

- **Hearer’s Task**: Buy sweets based on speaker’s description

 ‘Some of the girls found all of their marbles and some of the girls found none of their marbles.’

 - chocolate □ YES □ NO
 - candy □ YES □ NO
 - gummy bear □ YES □ NO
Methods

Procedure:
- Participants are randomly assigned to each role (3 times)
- System pairs two participants, pairings change across blocks
- Participants learn reward system with pictures in practice phase

Items:
- 7 worlds are instantiated by six items
- In one block, a world is shown only once

Participants:
- 38 German participants (mean age: 29.3, 21 female, 17 male)
- 2 groups with 4 players (8), 5 groups with 2 players (10)
- 6 groups with 3 players plus experimenter (18); experimenter employs critical strategy (produces statements predicted by Benz’ model)
The interactive best response paradigm

Success rate of utterance

Calculation of success rate:

- Use average response/interpretation of participants
- Data of experimenter are eliminated
- $p_i(w|u)$: probability of participant i interpreting utterance u as w

$$\text{Succ}(u|w) = \sum_{i \in H(u)} p_i(w|u)/|H(u)|,$$

$H(u)$: set of participants who interpreted utterance u.
Results: Success rate and length of utterance

Results (→: critical strategy):

<table>
<thead>
<tr>
<th>utterances</th>
<th>world</th>
<th>success %</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ (None–any) (All–none)</td>
<td>1</td>
<td>98%</td>
<td>1.0</td>
</tr>
<tr>
<td>→ (All–some) (All–some but not all)</td>
<td>2</td>
<td>94%</td>
<td>1.58</td>
</tr>
<tr>
<td>→ (All–all)</td>
<td>3</td>
<td>99%</td>
<td>1.0</td>
</tr>
<tr>
<td>→ (Some–some, some–none) (Some–none, some–some, none–all) (Some–some)</td>
<td>4</td>
<td>95%</td>
<td>2.72</td>
</tr>
<tr>
<td>→ (Some–all, some–none)</td>
<td>5</td>
<td>96%</td>
<td>2.63</td>
</tr>
<tr>
<td>→ (Some–all, some–some)</td>
<td>6</td>
<td>98%</td>
<td>2.60</td>
</tr>
<tr>
<td>→ (Some–all, some–some, some–none)</td>
<td>7</td>
<td>100%</td>
<td>3.27</td>
</tr>
</tbody>
</table>
Results: Comparison with individual strategies

- Success rates of individual players with utterances occurring more than once in corpus
- Critical (Benz’ model): 0.971, average participant: 0.925
- Critical strategy is significantly better than average participant strategy (one-tailed t test: $p < .001$)
Results: Comparison with individual strategies

- y-axis: 1 — Success rates of individual players (utterances occurring more than once).
- x-axis: average length of utterances of strategy
- Critical: av.–length: 1.71429, failure rate: 0.029
Section 5

Comparison with other Theories
Structural Accounts

Sentence level accounts:

<table>
<thead>
<tr>
<th></th>
<th>Chierchia 2004</th>
<th>Sauerland 2004</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>some some</td>
<td>${4, 7}$</td>
<td>${4}$</td>
<td>${4}$ (25%), ${2}$ (75%)</td>
</tr>
<tr>
<td>some some & some all</td>
<td>${7}$</td>
<td>${5, 7}$</td>
<td>${6}$ (98%)</td>
</tr>
<tr>
<td>some none & some all</td>
<td>${7}$</td>
<td>${5, 7}$</td>
<td>${7}$ (100%)</td>
</tr>
<tr>
<td>some none & some all</td>
<td>${5, 7}$</td>
<td>${5, 7}$</td>
<td>${5}$ (96%)</td>
</tr>
</tbody>
</table>
Predictions of Modern Localism

Example:
- Conjunction: Some some and some all
- Observed interpretation: 6 (98%)

Example (Modern Localism: Chierchia et al 2012)

possible readings

<table>
<thead>
<tr>
<th>some</th>
<th>some</th>
<th>and some all</th>
<th>readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>some</td>
<td>O</td>
<td>[some]</td>
<td>6,7</td>
</tr>
<tr>
<td>O [some]</td>
<td>some</td>
<td>...</td>
<td>5,7</td>
</tr>
<tr>
<td>O [some]</td>
<td>O [some]</td>
<td>...</td>
<td>6,7</td>
</tr>
<tr>
<td>O [some]</td>
<td>O [some]</td>
<td>...</td>
<td>⊥</td>
</tr>
<tr>
<td>O [some]</td>
<td>some</td>
<td>...</td>
<td>5,7</td>
</tr>
<tr>
<td>O [some]</td>
<td>some</td>
<td>...</td>
<td>5,7</td>
</tr>
</tbody>
</table>
A Bayesian Model

Take into account:

- Aims at explanatory models (why vs. what)
- Uncertainty about contextual parameters
- Error prone communication
- Fit parametric models to data

What we tested:

- Pick one specific model: (Qing & Franke 2014)
- Fitted to experimental data
- Interested in qualitative behaviour
Reference Game Task

Speaker:
- chooses object: *e.g. green circle*
- signals: square, circle, green, blue

Hearer:
- receives signal, *e.g. green*
- chooses object, *e.g. green circle*

goal: speaker and hearer choose same object

An experimental token

- Green square
- Green circle
- Blue circle

Possible Parameters Influencing Production

- Probability with which hearer chooses worlds
- Preference for short utterances
Towards a model: Start with naive interpreter

Probability of choosing world w given utterance u:

$$P_{\text{literal}}(w | u) = \begin{cases}
\frac{1}{|u|} & \text{if } w \in u \\
0 & \text{else}
\end{cases}$$

Expected utility of utterance u given w (disregarding preferences for signals):

$$EU(u | w) = P_{\text{literal}}(w | u).$$

Expected utility of utterance u given w (including preferences for signals):

$$EU(u | w) = P_{\text{literal}}(w | u) + \text{cost}(u). \quad \text{(if } w \in u)$$
Determining Speaker Production Probability

Background: Discrete rational choice theory.
- penalty *cost* for choosing colour: $0 \geq cost \geq -1$.
- degree of rationality λ

\[
P_{\text{prod}}(u \mid w, \lambda, cost) = \frac{\exp(\lambda \cdot EU(u \mid w, cost))}{\sum_{u'} \exp(\lambda \cdot EU(u' \mid w, cost))}
\]
\[
= \frac{\exp(\lambda \cdot (P_{\text{literal}}(w \mid u) + cost(u)))}{\sum_{u'} \exp(\lambda \cdot (P_{\text{literal}}(w \mid u') + cost(u')))}
\]

\[
P_{\text{inter}}(w \mid u; \lambda, cost) = \frac{P(w) P_{\text{prod}}(u \mid w, \lambda, cost)}{\sum_{w'} P(w') P_{\text{prod}}(u \mid w', \lambda, cost)}
\]
Comparison with other Theories

Two Models

Model 0:
- $\lambda = 4.96$, $cost = -0.27$ (Pearson’s ρ: 0.82)
- Fitted to average human production strategy
 (utterances occurring more than once)
- Literal interpretation strategy
- Fitted: Euclidean distance
- av. length: 1.83201, success rate: 0.78

Model 1:
- $\lambda = 4.45$, $cost = -0.94$ (Pearson’s ρ: 0.68)
- Fitted to average human interpretation strategy
 (utterances occurring more than once)
- λ and $cost$ represent production strategy against literal interpretation strategy
- Fitted: Euclidean distance
- av. length: 1.10759, success rate: 0.52806
Comparison with individual strategies

- **y-axis**: 1 — Success rates of individual players (utterances occurring more than once).
- **X-axis**: average length of utterances of strategy
- **Critical**: av.-length: 1.71429, failure rate: 0.029
Comparison with individual strategies

- **y-axis**: Success rates of individual players (utterances occurring more than once).
- **X-axis**: Average length of utterances of strategy
- **Critical**: av.-length: 1.71429, failure rate: 0.029
Conclusion

Results:

▶ utterance length increases with complexity of world.
▶ critical strategy more efficient than average human strategy.
▶ strategies with higher average utterance lengths not more successful.
▶ strategies with lower average utterance lengths less successful.
▶ Results pose problems for structural accounts (localism and globalism)

Future direction:

▶ Extend paradigm to more sentence types
 (downward entailing, disjunction, non–monotonic, and more)
▶ Look at relation to RSA-models.
▶ Study scenarios with partial speaker knowledge.
Thank you for your attention!
References I

References II

Scalar implicatures, polarity phenomena, and the syntax / pragmatics interface.

Scalar implicature as a grammatical phenomenon.

Predicting pragmatic reasoning in language games.
References III

Signal to Act: Game Theory in Pragmatics.

Probabilistic pragmatics, or why Bayes’ rule is probably important for pragmatics.

Logic and conversation.
References IV

Sudies in the Way of Words.

Rationalizable signaling.

Pragmatics.

Quantity implicatures and iterated admissibility.

References VI

Scalar implicatures in complex sentences.

A mathematical theory of communication.