The best response: Speaker rationality in an interactive paradigm

Anton Benz, Nicole Gotzner

Centre for General Linguistics (ZAS)
Berlin
Workshop on Rationality, Probability and Pragmatics 25.-27. May 2016

Section 1

Implicature in Complex Sentences

Scalar Implicature and Implicature of Complex Sentences

Example (Unembedded implicature trigger)

1. Some of the girls found marbles.
$+>$ Not all found marbles.

Example (Embedded implicature trigger)

1. Every girl found some of their marbles.

The Standard Theory

Levinson (1983)

Example (Unembedded implicature trigger)
Some of the girls found marbles. $=A($ some $)$
$+>$ Not all girls found marbles.

Reasoning:

- $A($ all $)$: would have been more informative
- Speaker did't say $A(a l l)$ but $A($ some $)$
- Hence, he must believe $\neg A$ (some)
- Cooperativity + competence $\Rightarrow \neg A$ (some)

Horn scales: \langle all, some $\rangle,\langle a n d$, or \rangle, \ldots

Embedded Implicature

Example

1. Every girl found some of her marbles.
2. Some of the girls found some of their marbles.

Variously predicted readings:

(Chierchia 2004, Sauerland 2004, Chierchia et al 20012)

1. Every girl found some of her marbles.

- literal: Every girl found some and possibly all of her marbles.
- global: Not every girl found all of her marbles.
- local: Every girl found some but not all of her marbles.

2. Some of the girls found some of their marbles.

- glob/loc: Not all of the girls found some of their marbles.
- glob: None of the girls found all of her marbles.

Game Theory and Complex Sentences

Interactional approaches:

- Franke (2009) / Jäger (2013): Iterated Best Response Models.
- Benz (2012): Error Models.
- Pavan (2013) / Rothschild (2013): Iterated Admissibility Models.
- Bergen et al. (in print), Potts et al. (in print): Bayesian Models.

Problem:

- GT provides no technique for analysing linguistic structure.
- Seems to be confined to a globalist approach.

Aims of this Talk

- Present a specific model of implicature in complex sentences.
- Introduce new interactive experimental paradigm for testing the model.
- Evaluate experimental results/different speaker strategies.

Section 2

Error Models

Error Models

Benz 2012

- Communication as stochastic process (Shannon 1948).

Error Models

Benz 2012

- Communication as stochastic process (Shannon 1948).

Implicature

- If hearer can uniquely recover intended message \Rightarrow Success.
- If not \Rightarrow Clarification request.

Error Models: Critical Example

The Role of Errors

Example (Bus Ticket)

An email was sent to all employees that bus tickets for a joint excursion have been bought and are ready to be picked up. By mistake, no contact person was named. Hence, H asks one of the secretaries:
H : Where can I get the bus tickets for the excursion?
S : Ms. Müller is sitting in office 2.07. ($U_{M 2.07}$)
$+>$ Bus tickets are available from Ms. Müller.

Problem:

- Hearer finds list with all room numbers of all employees. \nRightarrow Goes to 2.07.
\Rightarrow Literal content not enough for inducing hearer to choose intended action.

A Game Tree

- Problem: $E U\left(\right.$ go-2.07 $\left.\mid \llbracket U_{M 2.07} \rrbracket\right)=E U\left(\operatorname{search} \mid \llbracket U_{M 2.07} \rrbracket\right)=\varepsilon$.
- Implies: Literal content is irrelevant.

How it should have been played

- Literal content is deciding optimal action.
- In Example speaker omitted part of message.

Omitting Part of Message

- Literal content is deciding optimal action.
- In Example speaker omitted part of message.

Presentation in Table

- Consider for each state of affairs the optimal assertions.
- Consider all utterances which can result from omitting a conjunct of message.
\Rightarrow Noise (\mathscr{N}_{φ})
- Consider the reduced utterances from which the original message can be reconstructed. $\left(\mathscr{U}_{\varphi}\right)$

φ	$\operatorname{Lit}(\varphi)$	\mathscr{N}_{φ}	\mathscr{U}_{φ}
$\varphi_{\text {Mhas } / 2.07}$	$U_{M \text { has } / 2.07}$	$U_{M \text { has } / 2.07}, F_{M \text { has }}, U_{M 2.07}$	$U_{M 2.07}$
$\varphi_{\text {Mhas } / 3.11}$	$F_{M \text { has } / 3.11}$	$F_{M \text { has } / 3.11}, F_{M \text { has }}, F_{M 3.11}$	$F_{M 3.11}$
$\varphi_{\text {Shas } / 2.07}$	$F_{S \text { has } / 3.11}$	$F_{S_{\text {has } / 3.11}}, F_{S \text { has }}, F_{S 3.11}$	$F_{S 3.11}$
$\varphi_{\text {Shas } / 3.11}$	$U_{S \text { has } / 3.11}$	$U_{S \text { has } / 3.11}, F_{S \text { has }}, F_{S 3.11}$	$F_{S 3.11}$

Characteristics

- Uniform explanation of relevance and quantity implicature
- No gambling: short utterances communicate message with certainty
- No blocking: preference for short utterances does not lead to risky utterances
- No hidden semantic operators

Section 3

Testing for Implicature by Decision Making

The basic best response paradigm Nicole Gotzner \& Anton Benz

Scenario

Background:

- 4 girls who each own a set of 4 special edition marbles (Degen \& Goodman, 2014);
- marbles get lost during play and girls have to find them
- mother offers rewards to girls

Reward system:

- chocolate: girl finds all 4 of her marbles
- candy: girl finds fewer than 4 of her marbles
- gummy bears: girl finds none of her marbles (consolation prize)

Instructions

- Mother tells participants how many marbles each girl found
- Task: Participants are asked to buy sweets for the girls

Example

Sentence: No girl found any of her marbles

Chocolate	\square	YES	X	No
Candy	\square	YES	X	No
Gummy bear	X	YES	\square	No

The Experiment as Signalling Game

Playing the game:

1. Mother = speaker knows actual world
2. Mother chooses an utterance
3. Subject chooses an action: buying sweets
4. Game ends

- Game structure common knowledge
- Game of pure coordination: preferences aligned

Preferences:

- Every girl should get her appropriate sweet
- No superfluous sweets should be bought

Seven possible worlds

- $\exists \mid \nexists$: Some found none
- $\exists \mid \exists^{\prime}$: Some found some but not all
- $\exists \mid \forall$: Some found all

$\exists \exists \mid \nexists$	$\exists \mid \exists!$	$\exists \mid \forall$	world
1	0	0	$v_{1}=\square_{1}$
0	1	0	$v_{2}=\square_{2}$
0	0	1	$v_{3}=\square_{3}$
1	1	0	$v_{4}=\square_{4}$
1	0	1	$v_{5}=\square_{5}$
0	1	1	$v_{6}=\square_{6}$
1	1	1	$v_{7}=\square_{7}$

Seven possible actions

Actions

- I: Gummy bear
- I: Candy
- I: Chocolate

Best responses

world	act	world	act	world	act
$v_{1}=\square_{1}$	--	$v_{4}=\square_{4}$	II.	$v_{7}=\square_{7}$	IIII
$v_{2}=\square_{2}$	--	$v_{5}=\square_{5}$	-.		
$v_{3}=\square_{3}$	_-\	$v_{6}=\square_{6}$	_\|I		

Effect of Uncertainty

Best responses

- In all other cases: ||||

Error Models for Complex Sentences

Different alternatives:

- Alternative utterances constructed from worlds.

Literal descriptions of worlds:

world	utterances	world	utterances
$\square 1$	$U_{\forall \mid \exists}$	\square_{4}	$U_{\exists!\mid \exists} \wedge U_{\exists!\mid \exists!} \wedge U_{7 \backslash \mid \forall}$
	$\cup_{7 \text { 7] }}$	\square_{5}	$U_{\exists!\mid \nexists} \wedge U_{\exists \exists \mid \exists!} \wedge U_{\exists!\mid \forall}$
$\square 2$	$U_{\forall \mid \exists!}$	${ }_{6}$	$U_{\forall \mid \exists} \wedge U_{\exists!\mid \forall} \wedge U_{\text {ق! } \mid \exists!}$
	$U_{\forall \mid \exists} \wedge U_{\text {㓞 }}$		$U_{\exists!\mid \forall} \wedge U_{\exists!\mid \exists!} \wedge U_{\exists \exists \mid \exists \exists}$
${ }^{3}$	$U_{\forall \mid V}$	\square_{7}	$U_{\exists!\mid \forall} \wedge U_{\exists!!\exists!} \wedge U_{\exists!!\exists}$

- $U_{Q \mid Q^{\prime}}: Q$ of the girls found Q^{\prime} of the marbles.
- \exists !: some but not all, \nexists : none

Error Models for Complex Sentences

- Shorter utterances constructed by elimination rules

Elimination rules:

1. $U_{(\exists!)} \rightarrow U_{(\exists)}$: reduction of 'some but not alf to 'some'
2. $U_{\exists \mid \alpha} \wedge U_{\beta} \rightarrow U_{\beta}$: elimination of conjuncts with empty subjects

Restrictions:

- Rule $U_{x} \rightarrow U_{y}$ only applicable if $\llbracket U_{x} \rrbracket \subseteq \llbracket U_{y} \rrbracket$
- Requirement: unique recoverability of meaning (long story)

Application of Elimination rules

Literal descriptions of worlds：

－world utterances

－1	$U_{\forall \mid \exists \wedge} \wedge U_{7\|\exists\|} \wedge U_{7 \mid \forall}$
$\square 2$	$U_{\nexists \mid \exists \exists} \wedge U_{\forall \mid \exists!} \wedge U_{\exists \exists \mid \forall}$
${ }^{3}$	$U_{\nexists\|\exists\| 7} \wedge U_{\text {羽 }!} \wedge U_{\forall \mid \forall}$
\square_{4}	$U_{\exists!\mid \exists \wedge} \wedge U_{\exists!\mid \exists!} \wedge U_{\exists \exists \mid \forall}$

world	utterances	
\square_{5}		
$\\|_{6}$	$U_{\exists \exists \mid \exists \exists} \wedge U_{\exists!\| \|!} \wedge U_{\exists ⿰ 习 习}^{1 \mid \forall}$	
17	$U_{\exists!\mid \nexists} \wedge U_{\exists!\mid \exists!} \wedge U_{\exists!\mid \forall}$	

Application of Elimination rules

Elimination of 'none of the girls ...:

- world utterances

Application of Elimination rules

Elimination of some but not all:

- world utterances

\square_{1}	$U_{\forall \mid \exists \exists}$
\square_{2}	$U_{\forall \mid \exists}$
\square_{3}	$U_{\forall \mid \forall}$
\square_{4}	$U_{\exists \mid \exists} \wedge U_{\exists \mid \exists}$

world	utterances
$\square U_{7}$	$U_{\exists \exists \nexists} \wedge U_{\exists \mid \forall}$
$\square U_{6}$	$U_{\exists \exists \exists} \wedge U_{\exists \mid \forall}$
$\square \coprod_{7}$	$U_{\exists \mid \exists} \wedge U_{\exists \mid \exists} \wedge U_{\exists \mid \forall}$

Application of Elimination rules

Predicted maximal simplification:

- world utterances

\square_{1}	$U_{\forall \mid \exists}$
\square_{2}	$U_{\forall \mid \exists}$
\square_{3}	$U_{\forall \mid \forall}$
\square_{4}	$U_{\exists \mid \exists} \wedge U_{\exists \mid \exists}$

Testing the Model

Testable predictions:

- utterance length increases with complexity of world.
- critical strategy not less efficient than average human strategy.
- strategy is efficient:
- increasing average utterance length does not increase communicative success.
- decreasing average length should decrease communicative success (??) (claim in general probably not correct, however, we expected it in marble scenario)

Section 4

The interactive best response paradigm

Anton Benz \& Nicole Gotzner

The interactive best response paradigm

- Participants play best response paradigm in groups, taking two different roles (speaker and hearer)
- Speaker's task: Describe state of the world represented by picture
- Response options: all, some, none, some but not all, some and possibly all, any (up to 5 sentences)

Lisa

Susi
Einige
der Mädchen fand(en) \square ihrer Murmeln. \square
der Mädchen fand(en) \square ihrer Murmeln. \square

Hearer's task

- Hearer's Task: Buy sweets based on speaker's description 'Some of the girls found all of their marbles and some of the girls found none of their marbles.'

chocolate	\square	YES	\square	NO
candy	\square	YES	\square	NO
gummy bear	\square	YES	\square	NO

Methods

Procedure:

- Participants are randomly assigned to each role (3 times)
- System pairs two participants, pairings change across blocks
- Participants learn reward system with pictures in practice phase

Items:

- 7 worlds are instantiated by six items
- In one block, a world is shown only once

Participants:

- 38 German participants (mean age: 29.3, 21 female, 17 male)
- 2 groups with 4 players (8), 5 groups with 2 players (10)
- 6 groups with 3 players plus experimenter (18); experimenter employs critical strategy (produces statements predicted by Benz' model)

Success rate of utterance

Calculation of success rate:

- Use average response/interpretation of participants
- data of experimenter are eliminated
- $p_{i}(w \mid u)$: probability of participant i interpreting utterance u as w

$$
\operatorname{Succ}(u \mid w)=\sum_{i \in H(u)} p_{i}(w \mid u) /|H(u)|,
$$

$H(u)$: set of participants who interpreted utterance u.

Results: Success rate and length of utterance

Results (\rightarrow : critical strategy):

	utterances	world	success \%
length			
\rightarrow (None-any)	\square_{1}	98%	1.0
	(All-none)		100%
\rightarrow (All-some)	\square_{2}	94%	1.58
	(All-some but not all)		93%
\rightarrow (All-all)	\square_{3}	99%	1.0
\rightarrow (Some-some, some-none)	\square_{4}	95%	2.72
	(Some-none, some-some, none-all)		100%
	(Some-some)		25%
\rightarrow (Some-all, some-none)	\square_{5}	96%	
\rightarrow (Some-all, some-some)	\square_{6}	98%	2.63
\rightarrow (Some-all, some-some, some-none)	\square_{7}	100%	2.60

Results: Comparison with individual strategies

- Success rates of individual players with utterances occurring more than once in corpus
- Critical (Benz' model): 0.971, average participant: 0.925
- Critical strategy is significantly better than average participant strategy (one-tailed t test: $\mathrm{p}<.001$)

Results: Comparison with individual strategies

- y-axis: 1-Success rates of individual players (utterances occurring more than once).
- x-axis: average length of utterances of strategy
- Critical: av.-length: 1.71429, failure rate: 0.029

Section 5

Comparison with other Theories

Structural Accounts

Sentence level accounts:

	Chierchia 2004	Sauerland 2004	Observed
some some 	$\left\{\square_{4}, \square_{7}\right\}$	$\left\{\square_{4}\right\}$	$\square_{4}(25 \%), \square_{2}(75 \%)$
some all	$\left\{\square_{7}\right\}$	$\left\{\square_{5}, \square_{7}\right\}$	$\square_{6}(98 \%)$
 	$\left\{\square_{7}\right\}$	$\left\{\square_{5}, \square_{7}\right\}$	$\square_{7}(100 \%)$
some all some all	$\left\{\square_{5}, \square_{7}\right\}$	$\left\{\square_{5}, \square_{7}\right\}$	$\square_{5}(96 \%)$

Predictions of Modern Localism

Example:

- Conjunction: Some some and some all
- Observed interpretation: \square_{6} (98\%)

Example (Modern Localism: Chierchia et al 2012) possible readings

some	some and some all	$\square_{3}, \square_{4}, \square_{6}, \square_{7}$	
some	O[some]	\ldots	\square_{6}, \square_{7}
O[some]	some	\ldots	\square_{5}, \square_{7}
O[some]	O[some]	\ldots	\square_{6}, \square_{7}
O[some	some]	\ldots	\perp
O[some	some	\ldots]	$\square \square_{5}, \square_{7}$

A Bayesian Model

Take into account:

- Aims at explanatory models (why vs. what)
- Uncertainty about contextual parameters
- Error prone communication
- Fit parametric models to data

What we tested:

- Pick one specific model: (Qing \& Franke 2014)
- Fitted to experimental data
- Interested in qualitative behaviour

Reference Game Task

Speaker:

- chooses object: e.g. green circle
- signals: square, circle, green, blue

Hearer:

- receives signal, e.g. green
- chooses object, e.g. green circle
goal: speaker and hearer choose same object

An experimental token

Frank Goodman (2012), Qing \& Franke (2015), Franke \& Jäger (to appear)

Possible Parameters Influencing Production

- Probability with which hearer chooses worlds
- Preference for short utterances

Towards a model: Start with naive interpreter

Probability of choosing world w given utterance u :

$$
P_{\text {literal }}(w \mid u)= \begin{cases}\frac{1}{||u|} & \text { if } w \in u \\ 0 & \text { else }\end{cases}
$$

Expected utility of utterance u given w (disregarding preferences for signals):

$$
E U(u \mid w)=P_{\text {literal }}(w \mid u)
$$

Expected utility of utterance u given w (including preferences for signals):

$$
\left.E U(u \mid w)=P_{\text {literal }}(w \mid u)+\operatorname{cost}(u) . \quad \text { if } w \in u\right)
$$

Determining Speaker Production Probability

Background: Discrete rational choice theory.

- penalty cost for choosing colour: $0 \geq \operatorname{cost} \geq-1$.
- degree of rationality λ

$$
\begin{aligned}
P_{\text {prod }}(u \mid w, \lambda, \cos t) & =\frac{\exp (\lambda \cdot E U(u \mid w, \cos t))}{\sum_{u^{\prime}} \exp \left(\lambda \cdot E U\left(u^{\prime} \mid w, \cos t\right)\right)} \\
& =\frac{\exp \left(\lambda \cdot\left(P_{\text {literal }}(w \mid u)+\operatorname{cost}(u)\right)\right)}{\sum_{u^{\prime}} \exp \left(\lambda \cdot\left(P_{\text {literal }}\left(w \mid u^{\prime}\right)+\operatorname{cost}\left(u^{\prime}\right)\right)\right)} \\
P_{\text {inter }}(w \mid u ; \lambda, \cos t) & =\frac{P(w) P_{\text {prod }}(u \mid w, \lambda, \cos t)}{\sum_{w^{\prime}} P\left(w^{\prime}\right) P_{\text {prod }}\left(u \mid w^{\prime}, \lambda, \cos t\right)}
\end{aligned}
$$

Two Models

Model 0:

- $\lambda=4.96$, cost $=-0.27$ (Pearson's $\rho: 0.82$)
- Fitted to average human production strategy
(utterances occurring more than once)
- Literal interpretation strategy
- Fitted: Euclidean distance
- av. length: 1.83201 , success rate: 0.78

Model 1:

- $\lambda=4.45$, cost $=-0.94$ (Pearson's $\rho: 0.68$)
- Fitted to average human interpretation strategy
(utterances occurring more than once)
- λ and cost represent production strategy against literal interpretation strategy
- Fitted: Euclidean distance
- av. length: 1.10759 , success rate: 0.52806

Comparison with individual strategies

- y-axis: 1 - Success rates of individual players (utterances occurring more than once).
- X-axis: average length of utterances of strategy
- Critical: av.-length: 1.71429, failure rate: 0.029

Comparison with individual strategies

- y-axis: 1 - Success rates of individual players (utterances occurring more than once).
- X-axis: average length of utterances of strategy
- Critical: av.-length: 1.71429, failure rate: 0.029

Conclusion

Results:

- utterance length increases with complexity of world.
- critical strategy more efficient than average human strategy.
- strategies with higher average utterance lengths not more successful.
- strategies with lower average utterance lengths less successful.
- Results pose problems for structural accounts (localism and globalism)

Future direction:

- Extend paradigm to more sentence types (downward entailing, disjunction, non-monotonic, and more)
- Look at relation to RSA-models.
- Study scenarios with partial speaker knowledge.

Thank you for your attention!

References I

[1] Anton Benz.
Errors in pragmatics.
Journal of Logic, Language, and Information, 21:97-116, 2012.
[2] Anton Benz.
Implicatures of complex sentences in error models.
In Andrea Schalley, editor, Practical theories and empirical practice, pages 273-306. John Benjamins, Amsterdam, 2012.
[3] Leon Bergen, Roger Levy, and Noah D. Goodman.
Pragmatic reasoning through semantic inference.
ms., 2014.

References II

[4] Gennaro Chierchia.
Scalar implicatures, polarity phenomena, and the syntax / pragmatics interface.
In Adriana Belletti, editor, Structures and Beyond, pages 39-103. Oxford University Press, Oxford, 2004.
[5] Gennaro Chierchia, Danny Fox, and Benjamin Spector.
Scalar implicature as a grammatical phenomenon.
In Claudia Maienborn, Klaus von Heusinger, and Paul Portner, editors, Semantics: An International Handbook of Natural Language Meaning, volume 3, pages 2297-2331. De Gruyter Mouton, Berlin, 2012.
[6] Michael C. Frank and Noah D. Goodman.
Predicting pragmatic reasoning in language games.
Science, 336(6084):998, 2012.

References III

[7] Michael Franke.
Signal to Act: Game Theory in Pragmatics.
PhD thesis, Universiteit van Amsterdam, 2009.
ILLC Dissertation Series DS-2009-11.
[8] Michael Franke and Gerhard Jäger.
Probabilistic pragmatics, or why Bayes' rule is probably important for pragmatics.
To appear in Zeitschrift für Sprachwissenschaft, 2014.
[9] Herbert Paul Grice.
Logic and conversation.
In Peter Cole and Jerry L. Morgan, editors, Syntax and Semantics, volume 3, pages 41-58. Academic Press, New York, 1975.

References IV

[10] Herbert Paul Grice.
Studies in the Way of Words.
Harvard University Press, Cambridge MA, 1989.
[11] Gerhard Jäger.
Rationalizable signaling.
Erkenntnis, pages 1-34, 2013.
[12] Stephen C. Levinson.
Pragmatics.
Cambridge University Press, Cambridge, 1983.
[13] Sascia Pavan.
Quantity implicatures and iterated admissibility.
Linguistics and Philosophy, 36:261-290, 2013.

References V

[14] Christopher Potts, Daniel Lassiter, Roger Levy, and Michael C. Frank. Embedded implicatures as pragmatic inferences under compositional lexical uncertainty.
Ms., Stanford University, 2015.
[15] Ciyang Qing and Michael Franke.
Variations on a bayesian theme: Comparing bayesian models of referential reasoning.
In Henk Zeevat and Hans-Christian Schmitz, editors, Bayesian Natural
Language Semantics and Pragmatics, pages 201-220. Springer, Heidelberg, 2015.
[16] Daniel Rothschild.
Game theory and scalar implicatures.
Ms., All Souls College, Oxford, 2011.

References VI

[17] Uli Sauerland.
Scalar implicatures in complex sentences.
Linguistics and Philosophy, 27:367-391, 2004.
[18] Claude E. Shannon.
A mathematical theory of communication.
Bell System Technical Journal, 27:379-423, 623-656, 1948.

