Symmetry, Pruning \& Brevity

Marie-Christine Meyer

ZAS Berlin

Disjunction Days @ ZAS June 2016

Relevance-Based Pruning

Narrowing down $\mathcal{A L T}$ to A is allowed only if no relevant alternative is left out

Brevity-Based Pruning

Narrowing down $\mathcal{A L T}$ to A is allowed only if the enriched meaning that this derives could not have been expressed simpler

Pruning

: The act of deleting elements from the set $\mathcal{A L T}$ of formal, potential alternatives
usually done in order to get the set of alternatives A that are actually used to compute the scalar implicatures of σ in C

Alternatives $\mathcal{A L T}(\sigma)$ used in implicature computation come from:

- the lexicon
- sub-constituents of σ
- the context
(1) John drank some ${ }_{\text {ALL }}$ of the beers
(2) Everybody knows a song or a poem
(3) Mary must reject some but not all papers.

Bill only has to reject some

Structural Alternatives $\mathcal{A L T}$

$\alpha \in \mathcal{A L T}(\sigma)$ iff α can be derived from σ by replacing sub-constituents in σ with

- elements from the lexicon
- sub-constituents of σ
- constituents uttered in C

Innocently Excludable Alternatives $\mathcal{I E}$

The set $\mathcal{I E} \subseteq \mathcal{A L T}(\sigma)$ is the intersection of all sets Max $\subseteq \mathcal{A L T}$ s.t.

1. all elements in Max can be negated together without contradicting σ
2. there is no element in $\mathcal{A L T}(\sigma)$ which could be added to Max and 1. still be met

An Example for $\mathcal{I E}$

(4) A or B

- $\mathcal{A L T}=\{\mathrm{A}, \mathrm{B}, \mathrm{A}$ and $\mathrm{B}, \mathrm{C}\}$
- $M a x_{1}=\{\mathrm{A}, \mathrm{A}$ and $\mathrm{B}, \mathrm{C}\}, \operatorname{Max}_{2}=\{\mathrm{B}, \mathrm{A}$ and $\mathrm{B}, \mathrm{C}\}$
- $\mathcal{I E}=\operatorname{Max}_{1} \cap \operatorname{Max}_{2}=\{\mathrm{A}$ and $\mathrm{B}, \mathrm{C}\}$

Predicted Implicature:

$$
(A \vee B) \wedge \neg(A \wedge B)[\wedge \neg C]
$$

Notation

$\operatorname{exh}[\mathcal{A L T}][\mathrm{A}$ or B$]$

Assumption

$e x h$ and the set it quantifies over (here: $\mathcal{A L T}$) are represented syntactically

Practice $\mathcal{A L T}$

C: John drank [e exactly three] beers

$$
\mathcal{A} L T(\phi):
$$

- lexicon: substitute τ with item four
- context: substitute τ with exactly three

$$
\mathcal{A} L T(\phi)=\{\text { THREE }, \text { EXACTLY THREE, FOUR }\}
$$

Back to Pruning

Why narrow down the set of structural alternatives $\mathcal{A} L T$?
"Pruning : The act of deleting elements from the set $\mathcal{A} L T$ of formal, potential alternatives"
[from earlier]
(5) Mary liked the costumes in Swan Lake

$\mathcal{A} L T$	\{ Mary loved the costumes in S.L.,
$=$	Mary invented Cheerios,
$\mathcal{I E}$	Mary ordered the invasion of Poland, ... $\}$

\rightarrow Pruning to $\mathcal{A} \subset \mathcal{A} L T$

Example of a possible pruning

$\mathcal{A L T}=\quad\{$ Mary loved the costumes in S.L.
Mary invented Cheerios,
Mary ordered the invasion of Poland, ... \}
\cap
\{Mary loved the costumes in S.L. $\}$
$=\mathcal{A}$: the pruned set of active alternatives

[from earlier:]
 Why narrow down the set of structural alternatives $\mathcal{A} L T$ to $\mathcal{A} \subset \mathcal{A} L T$?

To derive the implicatures actually observed in a given context C

The puzzle: Pruning is not always possible

Pruning: A Puzzle

Example of an impossible pruning

(6) (John drank some but not all of the beers. What about Mary?)
She drank some of the beers
$\mathcal{A} L T=$
\{SOME, SBNA, ALL\}
$\mathcal{A}=$
\{some, SBNa\}
$\operatorname{exh}[\mathcal{A}]$ [SOME]
$=$ SOME $\wedge \neg$ SBNA
$=\mathrm{ALL}$
X no pruning

Pruning: A Puzzle

Example of an impossible pruning

(7) (John drank some but not all of the beers, Bill drank all.) And Mary (also) drank some of the beers
$\mathcal{A} L T=$
$\mathcal{A}=$
$\operatorname{exh}[\mathcal{A}]$ [SOME]
\{SBNA, ALL, SOME\}
\{ALL, SOME\}
$=$ SOME $\wedge \neg$ ALL
$=$ SBNA
X no pruning

Pruning: A Puzzle

Example of an impossible pruning

(8) (Mary likes cats. What about John?) He likes cats or dogs
$\mathcal{A} L T=$
\{CATS, DOGS, CATS AND DOGS $\}$
$\mathcal{A}=$
\{CATS $\}$
$\operatorname{exh}[\mathcal{A}][\mathrm{CATS}$ OR
$=($ CATS \vee DOGS $) \wedge \neg$ CATS
DOGS]
$=$ DOGS $\wedge \neg \mathrm{CATS}$
X no pruning

Pruning: A Puzzle

Example of an impossible pruning
(9) (Mary owns exactly three cats. What about John?) He owns three cats
$\mathcal{A} L T=$
\{EXACTLY THREE, FOUR\}
$\mathcal{A}=$
\{EXACTLY THREE $\}$
$\operatorname{exh}[\mathcal{A}]$ [THREE]
$=$ THREE $\wedge \neg$ EXACTLY THREE
$=$ FOUR
X no pruning

What is the difference between the possible and the impossible prunings?

Fox \& Katzir (2011): Exhaustively relevant alternatives cannot be deleted from $\mathcal{A L T}$
(10) A pruning $\mathcal{A} \subset \mathcal{A L T}(\sigma)$ is licensed iff there is no element $\phi \in \mathcal{A} L T-\mathcal{A}$ s.t. ϕ is relevant when exhaustified w.r.t. \mathcal{A}
(11) ϕ is relevant when exhaustified w.r.t. \mathcal{A} iff $\operatorname{exh}[\mathcal{A}][\phi]$ is in the Boolean Closure of \mathcal{A}

Proposal

What blocks the impossible prunings is a more general constraint against redundancy

F\&K's condition (10) doesn't need to be stipulated

Efficiency

An LF ϕ is ruled out if there is a competitor ψ such that

- $\psi<\phi$
- $\llbracket \psi \rrbracket \equiv \llbracket \phi \rrbracket$
$\psi<\phi \quad$ iff $\quad \psi \in \mathcal{A} L T(\phi) \wedge \phi \notin \mathcal{A} L T(\psi)$

Notation $\mathcal{C O M P}(\phi)=\{\psi \mid \psi<\phi\}$

Efficiency - in simple words
ψ blocks ϕ if ψ is strictly simpler* than ϕ but the two are semantically equivalent
$*_{\text {in }}$ the sense of Katzir (2007)

Practice $\mathcal{C O} \mathcal{M P}$:

$\mathcal{C} O M P(\phi):$

- sub-constituents: substitute ϕ with μ
- sub-constituents: substitute τ with three
- lexicon \& sub-constituents: substitute three with four and then ϕ w μ

Practice $\mathcal{C O M P}$:

$$
\mathcal{C} O M P(\phi):
$$

- sub-constituents: substitute ϕ with μ
- sub-constituents: substitute τ with three
- lexicon \& sub-constituents: substitute three with four and then ϕ w μ

$$
\mathcal{C O M P}(\phi)=\{e x h[A][\text { THREE }], \text { EX. THREE, } e x h[A][\text { FOUR }], \ldots\}
$$

Proposal: Pruning through Brevity

Back to impossible pruning:
(12) (John drank some but not all of the beers...) Mary drank some of the beers
$\operatorname{exh}[\mathcal{A}][$ SOME $]=$ SOME $\& \neg \operatorname{SBNA}=$ all

$$
\mathcal{A}=\{\mathrm{SOME}, \mathrm{SBNA}\}
$$

$\mathcal{C O M P}(12)=\{$ SOME, SBNA, all $\}$
X blocked

(13) $\quad e x h[\mathcal{A}][$ SOME $]=$ SOME $\& \neg$ ALL $=$ sbna

$$
\mathcal{A}=\{\mathrm{SOME}, \mathrm{ALL}\}
$$

$\mathcal{C O M P}(15)=\{$ SOME, sbna, ALL $\}$

X blocked
(14) (Mary likes cats. What about John?) He likes cats or dogs

$$
\begin{aligned}
& \text { exh }[\mathcal{A}][\mathrm{CATS} \text { OR DOGS }] \\
& =(\mathrm{CATS} \vee D O G S) \& \neg \mathrm{CATS}=\text { dogs } \& \neg \mathbf{c a t s}
\end{aligned}
$$

$$
\mathcal{A}=\{\mathrm{CATS}\}
$$

$$
\begin{aligned}
\mathcal{C O M P}(14) & =\{\operatorname{exh}[A L T][\operatorname{dog} s]], \ldots\} \\
& =\text { dogs \& } \neg \text { cats }
\end{aligned}
$$

(Mary owns exactly three cats. What about John?) He owns three cats
(15) $\operatorname{exh}[\mathcal{A}]$ [THREE]
$=$ THREE \& \neg EXACTLY THREE $=$ four

$$
\mathcal{A}=\{\text { EXACTLY THREE }\}
$$

$\mathcal{C O M P}(15)=\{$ four,$\ldots\}$

X blocked

Intermediate Summary

- context can provide set $\mathcal{A} L T$ with particular properties:

$$
\begin{aligned}
& \mathcal{A} L T_{1}=\{\text { SOME, SBNA, ALL }\} \\
& \mathcal{A} L T_{2}=\{\text { EXACTLY THREE }, \text { THREE, FOUR }\}
\end{aligned}
$$

- no SI possible, but pruning would re-introduce unattested SI's:
- SOME \Rightarrow ALL
- THREE \Rightarrow FOUR
- The relevant restriction was formalized as a Brevity-based constraint

A Problem

Surprising Pruning Patterns

Symmetric Alternatives

Two alternatives α_{1}, α_{2} of σ are symmetric if the following holds:

- $\sigma=\alpha_{1} \vee \alpha_{2}$
- $\alpha_{1} \wedge \alpha_{2}=\perp$

Symmetric Alternatives

Two alternatives α_{1}, α_{2} of σ are symmetric if the following holds:

- $\sigma=\alpha_{1} \vee \alpha_{2}$
- $\alpha_{1} \wedge \alpha_{2}=\perp$
(16) $\mathcal{A L T}=\{$ SOME, SBNA, ALL $\}$
- SOME $=$ SBNA \vee ALL
- $\operatorname{SBNA} \wedge$ ALL $=\perp$

A problem

Recall: no SI and no pruning predicted

(17) (John drank some but not all of the beers...) exh Mary drank some of the beers

$$
\begin{aligned}
& \mathcal{A}=\mathcal{A} L T \text { (no pruning) } \\
& \mathcal{A L T}=\{\text { SBNA, SOME }, \text { ALL }\} \\
& \operatorname{Max}_{1}=\{\text { SBNA }\}, \operatorname{Max}_{2}=\{\mathrm{ALL}\}, \text { Max }_{1} \cap \operatorname{Max}_{2}=\{ \} \\
& \quad \operatorname{exh}[\mathcal{A L T}][\mathrm{SOME}]=\mathrm{SOME}
\end{aligned}
$$

A problem

Recall: no SI and no pruning predicted
(18) \#John only/exh talked to some of the girls, and Mary talked to some but not all
\neq John talked to some \& \neg sbna girls yesterday
(19) \#John ate exactly three cookies, and Mary only/exh ate three cookies
\neq Mary ate three $\& \neg$ exactly three cookies
$\mathcal{I E}=\{ \}$
exh and only predicted to be vacuous

A problem

Unpredicted pruning possible with \checkmark MaxPS
(20) (John drank some but not all of the beers.) \# Mary only drank some of the beers
but:
(21) (John drank some but not all of the beers.)
\checkmark Mary also only drank some of the beers

A problem

Unpredicted pruning possible when \checkmark MaxPS:

(22) John drank some but not all of the beers. Mary also only drank some of the beers
only $[\mathcal{A}][$ SOME $]=$ SOME $\& \neg$ ALL $=\mathrm{SBNA}$

$$
\begin{aligned}
& \mathcal{A} L T=\{\text { SOME }, \text { SBNA, ALL }\} \\
& \mathcal{A}=\{\text { SOME }, \text { ALL }\}
\end{aligned}
$$

\rightarrow Deleting sBNA possible?

A problem

But only into one direction:
(23) Sue drank all of the beers, John drank some but not all. Mary also only drank some of the beers
\mathbf{X} only $[\mathcal{A}][$ SOME $]=$ SOME $\& \neg$ SBNA $=\mathrm{ALL}$

$$
\begin{aligned}
& \mathcal{A} L T=\{\text { SOME, SBNA, ALL }\} \\
& \mathcal{A}=\{\text { SOME, SBNA }\}
\end{aligned}
$$

X Deleting alL not possible

A problem

A related observation:
(24) John is brilliant, but he is not organized)

Mary is also only brilliant
$\Rightarrow \neg($ Mary is organized $)$
$\mathcal{A} L T=\{$ brilliant, organized, not organized $\}$
$\mathcal{A}=\{$ brilliant, organized $\}$
$\rightarrow \mathcal{A}$ is possible

A problem

Attempt at a generalization:
It is the alternative containing the negation that can be deleted

$$
\begin{aligned}
\mathcal{A} L T & =\{\mathrm{A}, \text { not } \mathrm{B}, \mathrm{~B}\} \\
\checkmark \mathcal{A} & =\{\mathrm{A}, \mathrm{~B}\}
\end{aligned}
$$

A problem

It's not about negation:
(25) John went to Japan; he missed out on Korea Mary also only went to Japan
$\Rightarrow \neg$ (Mary went to Korea)

$$
\begin{aligned}
& \mathcal{A} L T=\{\text { go Japan, miss Korea, go Korea, ... }\} \\
& \mathcal{A}=\{\text { go Japan, go Korea }\}
\end{aligned}
$$

A problem

It's not about negation:
(26) Mary loves pandas, but she hates cats. John also only loves pandas
$\Rightarrow \neg$ (John loves cats)
$\mathcal{A} L T=\{$ love pandas, hate cats, love cats, ... $\}$

A problem

It's not about negation:
(27) John is brilliant, but he is not organized.

Mary is also only brilliant
$\Rightarrow \neg$ (Mary is organized)
$\mathcal{A} L T=\{$ brilliant, not organized, organized $\}$

versus

(28) John is polite, and he doesn't swear.

Mary is (\# also) only polite
$\Rightarrow \neg$ (Mary does not swear)
$\mathcal{A} L T=\{$ polite, not swear, swear $\}$

A problem

Contrast as predictive factor?
(29) John drank some but not all of the beers \#John drank some and not all of the beers
$\mathcal{A} L T=\{$ some, all, sbna $\}$
(30) Mary went to Japan, but she missed out on Korea \# Mary went to Japan, and she missed out on Korea
$\mathcal{A} L T=\{$ go Japan, go Korea, miss Korea $\}$

A problem

Contrast as predictive factor?
(31) John is brilliant, but he is not organized \#John is brilliant, and he is not organized
$\mathcal{A} L T=\{$ brilliant, organized, not organized $\}$
(32) John is polite, and he doesn't swear \# John is polite, but he doesn't swear
$\mathcal{A} L T=\{$ polite, not swear, swear $\}$

A problem

Contrast as predictive factor?

(33) John is brilliant, but he not organized.
(34) John went to Japan; But he missed Korea
(35) Mary loves pandas, but she hates cats
(36) John is polite, and he doesn't swear

A problem

Contrast as predictive factor?

(37) Mary is only brilliant $=$ Mary is brilliant but not organized $\mathcal{A} L T=\{$ brilliant, organized $\}$
"In excluding an alternative, but is closely related to the adverb only. (...) the alternatives presented in the but-conjuncts are excluded via negation.* [The two versions] (...) differ in two respects: First, in the case of only there may be more than one excluded alternative (...). Secondly, in the case of only the alternatives (...) need not be given explicitly, whereas in the case of but the alternative is presented in the second conjunct.

* if there is no explicit negation [think negative antonyms], the hearer has to reconstruct the appropriate alternative"

A problem

Contrast as predictive factor?

John is brilliant, but he not organized not + but- $\mathcal{A} L T$: organized

(38) Mary is also only brilliant
$\Rightarrow \neg$ (Mary is organized)

$$
\mathcal{A} L T=\{\text { brilliant, organized }\}
$$

A problem

Contrast as predictive factor?

> John went to Japan; BUT he missed Korea not + reconstructed but- $\mathcal{A} L T$: went to Korea
(39) Mary also only went to Japan $\Rightarrow \neg$ (Mary went to Korea)

$$
\mathcal{A} L T=\{\text { went to Japan, went to Korea }\}
$$

A problem

Contrast as predictive factor?

> Mary loves pandas, but she hates cats
> not + reconstructed but- $\mathcal{A} L T$: loves cats
(40) John also only loves pandas
$\Rightarrow \neg$ (John loves cats)

$$
\mathcal{A} L T=\{\text { loves pandas, loves cats }\}
$$

A problem

Contrast as predictive factor?

Descriptive Generalization (tentative)
Negation (explicit or implicit) that is used to create but-contrast is not included in the substitution source for $\mathcal{A L T}$

A problem

Intermediate Summary II

- but data are not necessarily evidence for problematic pruning
- Rather, the seemingly deleted alternative might have never be in $\mathcal{A} L T$ in the first place
- $\mathcal{A L T}$ is sensitive to independent constraints on contrastiveness e.g. in but-coordination
- Structural approach needs to be modified to allow for this sensitivity
- Not all negation is created equal when it comes to $\mathcal{A L T}$

Ambiguity and Oddness

Why does oddness only disappear with only, but not with exh?

Ambiguity and Oddness

A contrast in felicity:
(41) John drank some but not all of the beers.
\checkmark Mary also only drank some of the beers
$\Rightarrow \neg$ (Mary drank all of the beers)
(42) John drank some but not all of the beers. \# Mary (also) drank some of the beers
$\nRightarrow \neg$ (Mary drank all of the beers) \boldsymbol{X}

Ambiguity and Oddness

(43) John drank some but not all of the beers.

Possible structure: exh Mary (also) drank some of the beers

Possible alternatives (cf. only data)

$$
\mathcal{A} L T=\{\mathrm{SOME}, \mathrm{ALL}\}
$$

Prediction

$$
\operatorname{exh}[\mathcal{A L T}][\mathrm{SOME}]=\mathrm{SOME} \& \neg \mathrm{ALL}
$$

1. We know that $\mathcal{A}=\{$ SOME, ALL $\}$ is possible in the presence of but (here: some but not all)
2. Therefore, the problem cannot be a a vacuous (obligatory) exh: The SI should be possible
3. The non-exh reading with uncertainty implicatures should be possible a fortiori

The problem must be independent of $\mathcal{A L T}$

Ambiguity and Oddness

A parallel?

(44) \#Mary has 43 CDs and John has 50
(under approximate reading of 50)

Ambiguity and Oddness

Strategic Encoding

Let $\mu_{1}=$ SBNA, $\mu_{2}=$ SOME. If a sentence S is ambiguous between μ_{1} and μ_{2}, then the speaker should use S only if one of μ_{1}, μ_{2} is more likely than the other in the given context. Otherwise, she should use an alternative sentence S^{\prime} which only maps to one of μ_{1}, μ_{2}.

Ambiguity and Oddness

An a-symmetric context

(45) Mary drank some of the beers

$$
\begin{aligned}
& \mu_{1}=\operatorname{exh}[\{\mathrm{SOME}, \mathrm{ALL}\}][\mathrm{SOME}]=\mathrm{SBNA} \\
& \mu_{2}=\text { SOME }=\text { SOME } \vee \mathrm{ALL}
\end{aligned}
$$

Quantity, Opinionatedness, and $\mathcal{C O} \mathcal{M P}$ make μ_{1} more likely in default context C

Speaker uses (45) to encode μ_{1}

Ambiguity and Oddness

A symmetric context
(46) (John drank exactly three beers.) \# Mary drank three beers
$\mathcal{C O} \mathcal{M P}($ THREE $)=\{$ exactly three, three $\}$
$\mu_{1}=\operatorname{exh}[\{$ three, four $\}]$ [three] $=$ exactly three
$\mu_{2}=$ three

Contextual $\mathcal{C O} \mathcal{M P}$ makes μ_{1} no longer likely than μ_{2}

Ambiguity and Oddness

Intermediate Summary III

- exh differs from only in being covert
- structures are ambiguous wrt the presence of exh
- $\mu_{1}=e x h[\sigma]$ no longer more likely when unambiguous equivalent structure enters $\mathcal{C O M P}$
- encoding choice sensitive to contextual standard of complexity $\mathcal{C O M P}$

